Text Technologies for Data Science

INFR11145

IR Evaluation

Instructor:
Youssef Al Hariri
Pre-lecture

• How working on labs and CW going?
• Thanks for sharing lab results on Piazza
• Test collection for CW1 to be released next week
• No new lab this week (support to continue for previous labs)
• Today: long L1 and short L2
Lecture Objectives

- **Learn** about how to evaluate IR
 - Evaluation measures
 - P, R, F
 - MAP
 - nDCG

- **Implement**: (as part of CW2)
 - P, R
 - MAP
 - nDCG
Search Process

Document data store

Index

User Interaction

Log data

Evaluation

Ranking

fetch a set of results, present to the user

Iterate!

help user formulate the query by suggesting what he could search for

log user’s actions: clicks, hovering, giving up

Log data

Youssef Al Hariri, TTDS 2023/2024
IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline “control”
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Iterate …
- e.g. stemming improves results? (university → univers)
Lab 3 output

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
<td>4.8040</td>
<td>2</td>
<td>3549</td>
<td>7.0396</td>
<td>3</td>
<td>3354</td>
<td>4.6113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3533</td>
<td>4.7264</td>
<td>2</td>
<td>305</td>
<td>6.8394</td>
<td>3</td>
<td>3345</td>
<td>4.5087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3562</td>
<td>3.5454</td>
<td>2</td>
<td>288</td>
<td>6.6742</td>
<td>3</td>
<td>268</td>
<td>3.6606</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3608</td>
<td>3.4910</td>
<td>2</td>
<td>223</td>
<td>6.1252</td>
<td>3</td>
<td>328</td>
<td>3.4825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>141</td>
<td>3.3262</td>
<td>2</td>
<td>219</td>
<td>4.8626</td>
<td>3</td>
<td>21</td>
<td>3.3984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>361</td>
<td>3.3262</td>
<td>2</td>
<td>3762</td>
<td>4.8626</td>
<td>3</td>
<td>304</td>
<td>3.3722</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>92</td>
<td>3.2311</td>
<td>2</td>
<td>3663</td>
<td>4.5415</td>
<td>3</td>
<td>313</td>
<td>3.3436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3829</td>
<td>3.1818</td>
<td>2</td>
<td>3766</td>
<td>3.9924</td>
<td>3</td>
<td>3790</td>
<td>3.1796</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3420</td>
<td>3.1273</td>
<td>2</td>
<td>188</td>
<td>3.8844</td>
<td>3</td>
<td>55</td>
<td>3.0462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3734</td>
<td>3.0561</td>
<td>2</td>
<td>3360</td>
<td>3.0988</td>
<td>3</td>
<td>217</td>
<td>2.8492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3387</td>
<td>2.9626</td>
<td>2</td>
<td>3408</td>
<td>3.0315</td>
<td>3</td>
<td>361</td>
<td>2.8348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3599</td>
<td>2.9626</td>
<td>2</td>
<td>3390</td>
<td>2.8498</td>
<td>3</td>
<td>3789</td>
<td>2.7158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is that a good performance?
Configure your system

• **About the system:**
 • Stopping? Tokenise? Stemming? n-gram char?
 • Use synonyms improve retrieval performance?

• **Corresponding experiment?**
 • Run your search for a set of queries with each setup and find which one will achieve the best performance

• **About the user:**
 • Is letting users weight search terms a good idea?

• **Corresponding experiment?**
 • Build two different interfaces, one with term weighting functionality, and one without; run a user study
Types of Evaluation Strategies

• System-centered studies:
 • Given documents, queries, and relevance judgments
 • Try several variations of the system
 • Measure which system returns the “best” hit list
 • Laboratory experiment

• User-centered studies
 • Given several users, and at least two retrieval systems
 • Have each user try the same task on both systems
 • Measure which system works the “best”
Importance of Evaluation

• The ability to measure differences underlies experimental science
 • How well do our systems work?
 • Is A better than B?
 • Is it really?
 • Under what conditions?

• Evaluation drives what to research
 • Identify techniques that work and don’t work
The 3-dimensions of Evaluation

• **Effectiveness**
 - How “good” are the documents that are returned?
 - System only, human + system

• **Efficiency**
 - Retrieval time, indexing time, index size

• **Usability**
 - Learnability, flexibility
 - Novice vs. expert users
Cranfield Paradigm (Lab setting)

- **Query**
- **Document Collection**
- **IR System**
- **Search Results**
- **Evaluation Module**
- **Relevance Judgments**
- **Measure of Effectiveness**
Reusable IR Test Collection

• Collection of Documents
 • Should be “representative” to a given IR task
 • Things to consider: size, sources, genre, topics, …

• Sample of information need
 • Should be “randomized” and “representative”
 • Usually formalized topic statements (query + description)

• Known relevance judgments
 • Assessed by humans, for each topic-document pair
 • Binary/Graded

• Evaluation measure
Good Effectiveness Measures

• Should capture some aspect of what the user wants
 • IR → Do the results satisfy user’s information need?

• Should be easily replicated by other researchers

• Should be easily comparable
 • Optimally, expressed as a single number
 • Curves and multiple numbers are still accepted, but single numbers are much easier for comparison

• Should have predictive value for other situations
 • What happens with different queries on a different document collection?
Set Based Measures

• Assuming IR system returns sets of retrieved results without ranking
• Suitable with Boolean Search
• No certain number of results per query
Which looks the best IR system?

- For query Q, collection has 8 relevant documents:
Precision and Recall

• Precision:
 What fraction of these retrieved docs are relevant?

\[P = \frac{\text{rel} \cap \text{ret}}{\text{retrieved}} = \frac{TP}{TP + FP} \]
Precision and Recall

• **Recall:**
 What fraction of the relevant docs were retrieved?

\[
R = \frac{rel \cap ret}{relevant} = \frac{TP}{TP + FN}
\]

- Relevant documents
- Retrieved documents
- TP: relevant docs retrieved
- FP: irrelevant docs retrieved
- TN: irrelevant docs not retrieved
- FN: relevant docs not retrieved
Which looks the best IR system?

• For query Q, collection has 8 relevant documents:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

P=5/10 R=5/8
P=6/12 R=6/8

P=6/12 R=6/8
P=5/12 R=5/8

P=4/12 R=4/8

P=4/12 R=4/8
P=3/8 R=3/8

P=6/12 R=6/8

P=6/12 R=6/8
P=4/5 R=4/8
Trade-off between P & R

• Precision: The ability to retrieve top-ranked docs that are mostly relevant.

• Recall: The ability of the search to find all of the relevant items in the corpus.

• Retrieve more docs:
 • Higher chance to find all relevant docs \rightarrow R $\uparrow\uparrow$
 • Higher chance to find more irrelevant docs \rightarrow P $\downarrow\downarrow$
Trade-off between P & R

Returns relevant documents but misses many useful ones too

The ideal

Returns most relevant documents but includes lots of junk
What about Accuracy?

- **Accuracy**: What fraction of docs was classified correctly?

\[
A = \frac{TP + TN}{TP + FP + TN + FN}
\]

irrelevant >>>>> relevant

(needle in a haystack)

e.g.: \(N_{docs} = 1\text{M docs, } rel=10,\) \(ret=10\)

\[
TP = 5, \quad FP = 5, \quad FN = 5, \quad TN = 1\text{M} - 15
\]

\(\Rightarrow A = 99.999\%\)
One Measure? F-measure

\[F_1 = \frac{2 \cdot P \cdot R}{P + R} \]

\[F_\beta = \frac{(\beta^2 + 1)P \cdot R}{\beta^2 P + R} \]

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large

- Beta (\(\beta \)) controls relative importance of P and R
 - \(\beta = 1 \), precision and recall equally important \(\rightarrow F_1 \)
 - \(\beta = 5 \), recall five times more important than precision
F-measure?

- For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.500</td>
<td>0.625</td>
<td>0.556</td>
</tr>
<tr>
<td>B</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
</tr>
<tr>
<td>C</td>
<td>0.417</td>
<td>0.625</td>
<td>0.500</td>
</tr>
<tr>
<td>D</td>
<td>0.333</td>
<td>0.500</td>
<td>0.400</td>
</tr>
<tr>
<td>E</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td>F</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
</tr>
<tr>
<td>G</td>
<td>0.800</td>
<td>0.500</td>
<td>0.615</td>
</tr>
</tbody>
</table>

System: A, B, C, D, E, F, G
Precision: P=5/10, P=6/12, P=5/12, P=4/12, P=6/12
Recall: R=5/8, R=6/8
Rank-based IR measures

• Consider systems A & B
 • Both retrieved 10 docs, only 5 are relevant
 • P, R & F are the same for both systems
 • Should their performances considered equal?

• Ranked IR requires taking “ranks” into consideration!

• How to do that?
Which is the best ranked list?

- For query Q, collection has 8 relevant documents:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
<td>1</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>3</td>
<td>R</td>
<td>3</td>
<td>R</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>5</td>
<td>R</td>
<td>5</td>
<td>R</td>
<td>5</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>7</td>
<td>R</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>8</td>
<td>R</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>9</td>
<td>R</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>10</td>
<td>R</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>11</td>
<td>R</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>12</td>
<td>R</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>R</td>
</tr>
</tbody>
</table>
Precision @ K

• k (a fixed number of documents)
• Have a cut-off on the ranked list at rank k, then calculate precision!
• Perhaps appropriate for most of web search: most people only check the top k results
• But: averages badly, Why?
For query Q, collection has 8 relevant documents:

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
R-Precision

- For a query with known r relevant documents → R-precision is the precision at rank r ($P@r$)
- r is different from one query to another
- Concept: It examines the ideal case: getting all relevant documents in the top ranks
- Is it realistic?
R-Precision

- For query Q, collection has **8 relevant documents**:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>12</td>
</tr>
</tbody>
</table>
User Satisfaction??

• It is assumed that users need to find relevant docs at the highest possible ranks → Precision is a good measure

• But, user would cut-off (stop inspecting results) at some point, say rank x → P@x

• What is the optimal x? When you think a user can stop?
When a user can stop?

• IR objective: “satisfy user information need”
• Assumption: a user will stop once his/her information need is satisfied
• How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
• $P@x \rightarrow x$ can be any rank where a relevant document appeared (assume uniform distribution)
When to stop?

• For query Q, collection has 8 relevant documents:
When a user can stop?

- IR objective: “satisfy user information need”
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- \(P@x \rightarrow x \) can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all \(x \)’s?
 - every time you find relevant doc, calculate \(P@x \), then take the average at the end
Average Precision (AP)

<table>
<thead>
<tr>
<th>Q<sub>1</sub> (has 4 rel. docs)</th>
<th>Q<sub>2</sub> (has 3 rel. docs)</th>
<th>Q<sub>3</sub> (has 7 rel. docs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 R 1/1=1.00</td>
<td>1</td>
<td>1 R 1/2=0.50</td>
</tr>
<tr>
<td>2 R 2/2=1.00</td>
<td>2</td>
<td>2 R 2/5=0.40</td>
</tr>
<tr>
<td>3</td>
<td>3 R 1/3=0.33</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5 R 3/5=0.60</td>
<td>5</td>
<td>5 R 2/5=0.40</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7 R 2/7=0.29</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8 R 3/8=0.375</td>
</tr>
<tr>
<td>9 R 4/9=0.44</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation:

- **Q₁**:
 \[
 AP = \frac{3.04}{4} = 0.76
 \]

- **Q₂**:
 \[
 AP = \frac{0.62}{3} = 0.207
 \]

- **Q₃**:
 \[
 AP = \frac{1.275}{7} = 0.182
 \]
Mean Average Precision (MAP)

Q₁ (has 4 rel. docs)

1 R 1/1=1.00
2 R 2/2=1.00
3
4
5 R 3/5=0.60
6
7
8
9 R 4/9=0.44
10

AP = 0.76

Q₂ (has 3 rel. docs)

1
2
3 R 1/3=0.33
4
5
6
7 R 2/7=0.29
8

AP = 0.207

Q₃ (has 7 rel. docs)

1
2
3
4 R 1/2=0.50
5 R 2/5=0.40
6
7
8 R 3/8=0.375
9

AP = 0.182

MAP = (0.76+0.207+0.182)/3 = 0.383
AP & MAP

\[
AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)
\]

where, \(r \): number of relevant docs for a given query
\(n \): number of documents retrieved
\(P(k) \): precision @ \(k \)
\(rel(k) \): 1 if retrieved doc @ \(k \) is relevant, 0 otherwise.

\[
MAP = \frac{1}{Q} \sum_{q=1}^{Q} AP(q)
\]

where, \(Q \): number of queries in the test collection
AP/MAP

\[AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k) \]

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When \(r = 1 \) → MAP = MRR (mean reciprocal rank \(\frac{1}{k} \))
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: rel = 0/1
MAP

- For query Q, collection has **8 relevant documents**:

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.500</td>
<td>0.625</td>
<td>0.556</td>
</tr>
<tr>
<td>B</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
</tr>
<tr>
<td>C</td>
<td>0.417</td>
<td>0.625</td>
<td>0.500</td>
</tr>
<tr>
<td>D</td>
<td>0.333</td>
<td>0.500</td>
<td>0.400</td>
</tr>
<tr>
<td>E</td>
<td>0.375</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td>F</td>
<td>0.500</td>
<td>0.750</td>
<td>0.600</td>
</tr>
<tr>
<td>G</td>
<td>0.800</td>
<td>0.500</td>
<td>0.615</td>
</tr>
</tbody>
</table>

12 | 12 | 12 | 12 | 12
Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance

- Binary Relevance:
 - Relevant 1
 - Irrelevant 0

- Graded Relevance:
 - Perfect 4
 - Excellent 3
 - Good 2
 - Fair 1
 - Bad 0
Binary vs. Graded Relevance

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search
Discounted Cumulative Gain (DCG)

- **Gain** is accumulated starting at the top of the ranking and may be reduced (*discounted*) at lower ranks.
- Users care more about high-ranked documents, so we discount results by $1/\log_2(rank)$.
 - The discount at rank 4 is 1/2, and at rank 8 is 1/3.
- DCG_k is the total gain accumulated at a particular rank k (sum of DG up to rank k):

$$\text{DCG}_k = \text{rel}_1 + \sum_{i=2}^{k} \frac{\text{rel}_i}{\log_2(i)}$$
<table>
<thead>
<tr>
<th>k</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

DCG

<table>
<thead>
<tr>
<th>k</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Normalized DCG (nDCG)

- DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 - Can be any positive real number!

- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents

- nDCG@k = DCG@k / iDCG@k (divide actual by ideal)

- nDCG ≤ 1 at any rank position

- To compare DCGs, normalize values so that a ideal ranking would have a normalized DCG of 1.0
nDCG

<table>
<thead>
<tr>
<th>k</th>
<th>G</th>
<th>DG</th>
<th>DCG@k</th>
<th>iG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.89</td>
<td>6.89</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6.89</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6.89</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.39</td>
<td>7.28</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.71</td>
<td>7.99</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.67</td>
<td>8.66</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0.95</td>
<td>9.61</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>9.61</td>
<td>0</td>
</tr>
</tbody>
</table>
Summary:

- IR test collection:
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures

- IR measures:
 - R, P, F → not commonly used
 - P@k, R-precision → used sometimes
 - MAP → the most used IR measure
 - nDCG → the most used measure for web search
Resources

• Text book 1: Intro to IR, Chapter 8
• Text book 2: IR in Practice, Chapter 8