

Text Technologies for Data Science INFR11145

IR Evaluation

Instructor: Youssef Al Hariri

18-Oct-2023

Pre-lecture

- How working on labs and CW going?
- Thanks for sharing lab results on Piazza
- Test collection for CW1 to be released next week
- No new lab this week (support to continue for previous labs)
- Today: long L1 and short L2

Lecture Objectives

- Learn about how to evaluate IR
 - Evaluation measures
 - P, R, F
 - MAP
 - nDCG
- Implement: (as part of CW2)
 - P, R
 - MAP
 - nDCG

Search Process

IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline "control"
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Iterate ...
- e.g. stemming improves results? (university → univers)

Lab 3 output Is that a g

Is that a good performance?

1, 65, 4.8040	2, 3549, 7.0396	3, 3354, 4.6113
1, 3533, 4.7264	2, 305, 6.8394	3, 3345, 4.5087
1, 3562, 3.5454	2, 288, 6.6742	3, 268, 3.6606
1, 3608, 3.4910	2, 223, 6.1252	3, 328, 3.4825
1, 141, 3.3262	2, 219, 4.8626	3, 21, 3.3984
1, 361, 3.3262	2, 3762, 4.8626	3, 304, 3.3722
1, 92, 3.2311	2, 3663, 4.5415	3, 313, 3.3436
1, 3829, 3.1818	2, 3766, 3.9924	3, 3790, 3.1796
1, 3420, 3.1273	2, 188, 3.8844	3, 55, 3.0462
1, 3734, 3.0561	2, 3360, 3.0988	3, 217, 2.8492
1, 3387, 2.9626	2, 3408, 3.0315	3, 361, 2.8348
1, 3599, 2.9626	2, 3390, 2.8498	3, 3789, 2.7158

Configure your system

- About the system:
 - Stopping? Tokenise? Stemming? n-gram char?
 - Use synonyms improve retrieval performance?
- Corresponding experiment?
 - Run your search for a set of queries with each setup and find which one will achieve the best performance
- About the user:
 - Is letting users weight search terms a good idea?
- Corresponding experiment?
 - Build two different interfaces, one with term weighting functionality, and one without; run a user study

Types of Evaluation Strategies

- System-centered studies:
 - Given documents, queries, and relevance judgments
 - Try several variations of the system
 - Measure which system returns the "best" hit list
 - Laboratory experiment

User-centered studies

- Given several users, and at least two retrieval systems
- Have each user try the same task on both systems
- Measure which system works the "best"

Importance of Evaluation

- The ability to measure differences underlies experimental science
 - How well do our systems work?
 - Is A better than B?
 - Is it really?
 - Under what conditions?
- Evaluation drives what to research
 - Identify techniques that work and don't work

The 3-dimensions of Evaluation

Effectiveness

- How "good" are the documents that are returned?
- System only, human + system

• Efficiency

• Retrieval time, indexing time, index size

Usability

- Learnability, flexibility
- Novice vs. expert users

Reusable IR Test Collection

Collection of Documents

- Should be "representative" to a given IR task
- Things to consider: size, sources, genre, topics, ...
- Sample of information need
 - Should be "randomized" and "representative"
 - Usually formalized **topic** statements (query + description)
- Known relevance judgments
 - <u>Assessed</u> by humans, for each topic-document pair
 - Binary/Graded
- Evaluation measure

Good Effectiveness Measures

- Should capture some aspect of what the user wants
 - IR \rightarrow Do the results satisfy user's information need?
- Should be easily replicated by other researchers
- Should be easily comparable
 - Optimally, expressed as a single number
 - Curves and multiple numbers are still accepted, but single numbers are much easier for comparison
- Should have predictive value for other situations
 - What happens with different queries on a different document collection?

Set Based Measures

- Assuming IR system returns sets of retrieved results without ranking
- Suitable with Boolean Search
- No certain number of results per query

Which looks the best IR system?

• For query **Q**, collection has 8 relevant documents:

of EDINBURGH

Precision and Recall

• Precision:

What fraction of these retrieved docs are relevant?

 $P = \frac{rel \cap ret}{retrieved} = \frac{TP}{TP + FP}$

Precision and Recall

• Recall:

What fraction of the relevant docs were retrieved? $rel \cap ret$ TP $\overline{relevant} = \overline{TP + FN}$ Relevant documents

O^{cument} collection Relevant documents Retrieved. documents

of EDINBURGH

Which looks the best IR system?

• For query **Q**, collection has **8 relevant documents**:

Trade-off between P & R

- Precision: The ability to retrieve top-ranked docs that are mostly relevant.
- Recall: The ability of the search to find all of the relevant items in the corpus.
- Retrieve more docs:
 - Higher chance to find all relevant docs \rightarrow R $\uparrow\uparrow$
 - Higher chance to find more irrelevant docs \rightarrow P $\downarrow\downarrow$

Trade-off between P & R

What about Accuracy?

• Accuracy:

What fraction of docs was classified correctly?

 $A = \frac{TP + TN}{TP + FP + TN + FN}$

irrelevant >>>> *relevant* (needle in a haystack)

e.g.: *N_{docs}* = 1M docs, *rel*=10, *ret*=10

$$TP = 5, FP = 5,$$

 $FN 5, TN = 1M - 15$
 $\Rightarrow A = 99.999\%$

Youssef Al Hariri, TTDS 2023/2024

THE UNIVERSITY of EDINBURGH

One Measure? F-measure

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$F_{\beta} = \frac{(\beta^2 + 1)P \cdot R}{\beta^2 P + R}$$

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- Beta (β) controls relative importance of P and R
 - $\beta = 1$, precision and recall equally important $\rightarrow F1$
 - β = 5, recall five times more important than precision

THE UNIVERS

F-measure?

• For query **Q**, collection has **8 relevant documents**:

P=6/12

R=6/8

THE UNIVERSITY of EDINBURGH

	System	Precision	Recall	F1
	Α	0.500	0.625	0.556
	В	0.500	0.750	0.600
	С	0.417	0.625	0.500
	D	0.333	0.500	0.400
	Е	0.375	0.375	0.375
	F	0.500	0.750	0.600
P=	G	0.800	0.500	0.615
R=	=5/8 ₽= R	=6/12 P= =6/8 R	=5/12 R P	=4/12

Rank-based IR measures

- Consider systems A & B
 - Both retrieved 10 docs, only 5 are relevant
 - P, R & F are the same for both systems
 - Should their performances considered equal?
- Ranked IR requires taking "<u>ranks</u>" into consideration!
- How to do that?

Which is the best ranked list?

• For query **Q**, collection has **8 relevant documents**:

of EDINBURGH

Precision @ K

- *k* (a fixed number of documents)
- Have a cut-off on the ranked list at rank *k*, then calculate precision!
- Perhaps appropriate for most of web search: most people only check the top k results
- But: averages badly, Why?

• For query **Q**, collection has **8 relevant documents**:

	B	<u>C</u>	D	E	F	G
1 R	1	1 R	1 R	1 R	1	1
2	2	2 R	2 R	2	2	2 R
3 R	3	3	3 R	3 R	3 R	3 R
4	4	4	4	4	4 R	4 R
5 R	5	5 R	5 R	5	5 R	5 R
6	6 R	6	6	6	6 R	
7 R	7 R	7	7	7 R	7 R	
8	8 R	8	8	8	8	
9 R	9 R	9 R	9		9	
10	10 R	10	10		10	
	11 R	11	11		11 R	
	12	12 R	12		12	

R-Precision

- For a query with known *r* relevant documents
 → R-precision is the precision at rank *r* (P@*r*)
- *r* is different from one query to another
- Concept:

It examines the ideal case: getting all relevant documents in the top ranks

• Is it realistic?

R-Precision

• For query **Q**, collection has 8 relevant documents:

of EDINBURGH

User Satisfaction??

- It is assumed that users needs to find relevant docs at the highest possible ranks
 → Precision is a good measure
- But, user would cut-off (stop inspecting results) at some point, say rank x →P@x
- What is the optimal x? When you think a user can stop?

When a user can stop?

- IR objective: "satisfy user information need"
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- P@x →x can be any rank where a relevant document appeared (assume uniform distribution)

When to stop?

• For query **Q**, collection has **8 relevant documents**:

THE UNIVERSITY of EDINBURGH

When a user can stop?

- IR objective: "satisfy user information need"
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- P@x →x can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all x's?
 - every time you find relevant doc, calculate P@x, then take the average at the end

MAP = (0.76 + 0.207 + 0.182)/3 = 0.383

AP & MAP

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

where, r: number of relevant docs for a given query
n: number of documents retrieved
P(k) precision @ k
rel(k): 1 if retrieved doc @ k is relevant, 0 otherwise.

$$MAP = \frac{1}{Q} \sum_{q=1}^{Q} AP(q)$$

where, Q: number of queries in the test collection

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When $r=1 \rightarrow MAP = MRR$ (mean reciprocal rank $\frac{1}{\nu}$)
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: rel = 0/1

• For query **Q**, collection has **8 relevant documents**:

	A ³	B 6	<u>C</u> ²	D ¹	E ⁷	F ⁴	G
1	R	System	Precision	Recall	F1		1
23	R	Α	0.500	0.625	0.556		2 R 3 R
4		В	0.500	0.750	0.600		4 R
5	R	С	0.417	0.625	0.500		5 <mark>R</mark>
6 7	R	D	0.333	0.500	0.400		
8		E	0.375	0.375	0.375		
9 10	R	F	0.500	0.750	0.600		
10		G	0.800	0.500	0.615		
		12	12 R	12		12	

THE UNIVERSITY of EDINBURGH

Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance
- Binary Relevance:
 - Relevant 1
 - Irrelevant 0
- Graded Relevance:
 - Perfect 4
 - Excellent 3
 - Good 2
 - Fair **1**
 - Bad **0**

Binary vs. Graded Relevance

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search

Discounted Cumulative Gain (DCG)

- Gain is accumulated starting at the top of the ranking and may be reduced (*discounted*) at lower ranks
- Users care more about high-ranked documents, so we discount results by 1/log₂(rank)
 - the discount at rank 4 is 1/2, and at rank 8 is 1/3
- DCG_k is the total gain accumulated at a particular rank k (sum of DG up to rank k): (graded)

 $DCG_k = rel_1 + \sum_{i=2}^{k} \frac{rel_i}{\log_2(i)}$

Normalized DCG (nDCG)

- DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 - Can be any positive real number!
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents
- nDCG@k = DCG@k / iDCG@k (divide actual by ideal)
- $nDCG \le 1$ at any rank position
- To compare DCGs, normalize values so that a ideal ranking would have a normalized DCG of 1.0

EDINBURGH

nDCG

k	G	DG	DCG@k	iG
1	3	3	3	3
2	2	2	5	3
3	3	1.89	6.89	3
4	0	0	6.89	2
5	0	0	6.89	2
6	1	0.39	7.28	2
7	2	0.71	7.99	1
8	2	0.67	8.66	0
9	3	0.95	9.61	0
10	0	0	9.61	0

Summary:

- IR test collection:
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures
- IR measures:
 - R, P, F \rightarrow not commonly used
 - P@k, R-precision \rightarrow used sometimes
 - MAP \rightarrow the most used IR measure
 - nDCG \rightarrow the most used measure for web search

Resources

- Text book 1: Intro to IR, Chapter 8
- Text book 2: IR in Practice, Chapter 8

