
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 4: The Master Theorem and Heaps

SOLUTIONS

1. (a) Write down and justify the recurrence relation satisfied by T (n).

Choosing not to count the function header as a line to be executed, when j−i = 1
we execute exactly 3 lines (whether our search succeeds or fails) Otherwise, choos-
ing to count the ‘else’ as a line to be executed, we will perform 5 line executions,
of which will be the subcall binarySearch(A,key,i,k) or binarySearch(A,key,k,j)
— plus of course all line executions performed by this subcall itself.1 The latter
are subproblems of size bn/2c and dn/2e respectively, so in the worst case the
subproblem will have size dn/2e.2 This leads us to the recurrence:

T (1) = 3

T (n) = T (dn/2e) + 5 when n > 1

(The numbers will be slightly different under other views of what counts as a line
execution.)

(b) Simplify this down to an asymptotic recurrence relation, and solve it using the
Master Theorem.

Simplifying down to asymptotics, and ignoring the ceiling, we get

T (1) = Θ(1)

T (n) = T (n/2) + Θ(1) when n > 1

This is in the right form for the Master Theorem, with a = 1, b = 2, k = 0. Since
bk = 20 = 1 = a, we are in the ‘middle case’ of the theorem, and we conclude
that T (n) = Θ(nk lg n) = Θ(lg n) (which agrees with our earlier conclusions).

(c) Some easy exercises in plugging the relevant numbers into the Master Theorem:

i. T (n) = 2T (n/3) + Θ(n): Here a = 2, b = 3, k = 1. So a < bk, and we
conclude T (n) = Θ(nk) = Θ(n).

ii. T (n) = 7T (n/2) + Θ(n2): Here a = 7, b = 2, k = 2. So a > bk, and we
conclude T (n) = Θ(nlog2 7) = Θ(n2.807...).

1Making the call should certainly be counted as a line execution, as there is some work to be done in
pushing the relevant information onto the call stack.

2Strictly speaking, one should formally justify the implicit assumption here that T (dn/2e) ≥ T (bn/2c)
always — but we’ll take this as read.

1



Note: This is actually the recurrence relation arising from Strassen’s amaz-
ing algorithm for multiplying two n × n matrices, which is covered in UG3
Algorithms and Data Structures, and which improves asymptotically on the
Θ(n3) runtime of the obvious method.

iii. T (n) = 2T (n/4) + Θ(
√
n): Here a = 2, b = 4, k = 1/2. So a = bk, and we

conclude T (n) = Θ(
√
n lg n).

2. Draw the heap, and each intermediate state, which is created when we apply the Max-
Heap-Insert algorithm to the following sequence of elements {12, 5, 4, 8, 9, 1, 16, 20,
7, 6}. At each step draw both the tree representation and the contents of the array.

12 12,5 12,5,4 12,8,4,5

12,9,4,5,8 12,9,4,5,8,1 16,9,12,5,8,1,4 20,16,12,9,8,1,4,5

20,16,12,9,8,1,4,5,7 20,16,12,9,8,1,4,5,7,6

Figure 1: Tree and array representation of the heap from question 1

Answer: We work on the heap, taking each element in the sequence, and temporarily
add it to the heap as the new last node, then may need to rearrange the tree.

In the figures you can see the situation after one of the Max-Heap-Insert calls. The
solutions do not show how do that step-by-step, they just show the resulting heap
(tree and array representation). When presenting the solution in class, the steps
should be shown explicitly, i.e., how the new element is first placed as a new leaf
(and appended to the last position of the array) and then how to rearrange up
the heap. For example, when 8 goes in, it first is added as the left child of 5,
which at that point is the first available leaf node, and then it gets swapped with
its parent 5. The Max-Heap-Insert operation is detailed in the slides for Lec-
ture 11, which can be found here: https://opencourse.inf.ed.ac.uk/inf2-iads/
course-materials/semester-1/schedule.

Under each figure is written the array representation of the heap. From the heap it
is very easy to recover the array representation. In terms of presenting in class, it is
probably better to update the array representation together with the tree representa-
tion. In particular, for every rearrangement step in the tree, it makes sense to show
what happens correspondingly in the array.

2



3. Show that when we consider a list of items in sorted order (smallest first) that it will
take time Ω(n log(n)) to insert them into an initially empty heap. Give details of the
running-time we will have for each of the individual Max-Heap-Insert operations (and
why), and then show that the total running-time for this bad case satisfies Ω(n log(n)).

Why does this differ from the Θ(n) running-time for Build-Max-Heap on the input
array?

Answer: The key observation is that if the value of the key of the item being inserted
into a heap exceeds the values of all the k items already stored in the heap, then Max-
Heap-Insert will take time Θ(h) = Θ(lg(k)), where h is the height of the heap (because
the new item will need to be swapped all the way up to the root of the heap). So if
we insert an increasing sequence of n items, then every item inserted will be larger
than all the current heap items, and, for some sufficiently small constant c > 0, the
total time will be at least

n∑
i=1

c · lg(i) ≥
n∑

i=dn2 e

c lg(i) drop the smallest
⌊n

2

⌋
terms

≥
n∑

i=dn2 e

c lg
(n

2

)
remaining terms all at least

n

2

≥ n

2
c lg
(n

2

)
) ∈ Ω(n lg n) ,

so the time taken to insert the list (1, 2, . . . , n) into an initially empty heap is Ω(n lg n).

Note that this Ω(n lg n) lower bound (for the case where items are added in non-
decreasing order) is also a lower bound for worst-case running time (wrt input size n).

Build-Max-Heap: Observe that both Max-Heapify and Max-Heap-Insert have Θ(h)
running-time, where h is the height of the relevant heap (the worst-case running time
of these operations is Ω(h) as well as O(h)). Hence, to contrast the running time of an
algorithm that repeatedly calls Max-Heap-Insert against the Build-Max-Heap algorithm,
we need to look at the number of times each is called for each heap size.

Let h = blg nc be the height of the heap with n elements. While using Build-Max-Heap
we have 1 call on a heap of height h, two on heaps of height h−1, four on heaps of size
h − 2, and so on until we have i ∈ {1, . . . , 2h−1} calls on heaps of height 1 (heaps of
height 0 do not need Max-Heapify-ing). On the other hand, when inserting {1, . . . , n}
we have one call on a heap of height 0, two on heaps of height 1, four on heaps of
height 2, and so on until we have i ∈ {1, . . . , 2h} calls on heaps of height h. From this
we can see the Build-Max-Heap algorithm is organised to ensure that more calls are
made on smaller heaps (because it knows all the input in advance of constructing the
heap). However, when inserting the items one by one, it is possible that the input is
presented in such a way that we do a large number of calls which depend on lg(n).

4. This is a discussion question about heapq in Python and the differences from the
classical Heap methods in the book/slides.

Answer: You may use https://docs.python.org/3/library/heapq.html as a ref-
erence. The methods in heapq are heappush(heap, item), heappop(heap), heapify(x)
(to transform the list x into a heap), and heapreplace(heap, item). They also have
“private” methods _siftdown and _siftup.

3



Indexing is 0-based (so the relationship between the parent and child nodes is slightly
different).

Their implementation is based on a min heap, so heappop(heap) and heap[0] give
the minimum element not the largest.

They mention that heap.sort() (for their default sorting algorithm of Python)will
result in a list/array satisfying the heap property - that is because this is a min heap.

Now the particular methods:

• heappush is essentially an implemention of Min-Heap-Insert. It does an append
to the list/array and then a call to _siftdown with indices 0 and len(heap)-1.
siftdown is the bubbling-up process done by Heap-Insert.

The running time is Θ(1) plus the work done by the _siftdown call, which will
be O(h) for height h as with Min-Heap-Insert.

• heappop is an implementation of Heap-Extract-Min (for a Min Heap). It locally
copies the min item heap[0], then copies the final element of the heap into this
‘top’ position, and finally does a call to _siftup with index 0 to fix the heap
property.

The running time is Θ(1) plus the work done by the _siftup call, which will
be O(h) for height h. In fact _siftup works a bit differently to the classic
(Min variant of) Heapify, but it will still have the same Θ(h) running-time for a
sub-Heap of height h.

• heapreplace is a new method not in our classical set-up - if we want to both
extract the min and also put in a new item, it makes sense to read heap[0] and
then replace it with the new item, then a call to _siftup.

This is just an ‘optimisation’ method for when we do the two operations in order,
will do a bit less work overall but still have Θ(h) running-time.

• heappushpop where we plan to first pop and then push implements a shortcut
and a call to _siftup

Also an ‘optimisation’ method for when we do the two operations in order, will
do a bit less work overall but still have Θ(h) running-time.

• heapify(x) called on the list x is really is our Build-Heap. It runs bottom-up
from indices bn/2c down to 0, doing _siftup(i) on each such index.

This will run in Θ(n) time overall as discussed in the comments in the source
file, i.e., the same time as Build-Heap.

There are also _max variants of some of these methods, to operate on a max heap.
However not all methods have a ‘Max’ variant, for example there is no heappush_max.

There are also two ‘private’ methods _siftdown and _siftup.

• _siftdown is a method which does the ‘bubbling up” part of our Max-Heap-
Insert. It is a bit more general than the bubbling-up of Max-Heap-Insert as it has
an index parameter to mark the limit of the bubbling (don’t necessarily) go all
the way to the top.

• _siftup is a method which has the same effect as (a Min variant of) Heapify.
It is called at a node/index pos whose two child sub-Heaps are true heaps, but
where the item at pos breaks the rules, and then it fixes everything to satisfy the
Heap property from pos down.

4



It works a bit different to Heapify, however the asymptotic running time is also
Θ(h) for a sub-Heap of height h.

5


