

Machine Learning Frameworks Luo Mai

University of Edinburgh

•

•

•

•

•

•

•

Many ML applications are emerging

Massive computational power is available

Heterogeneous processors

- CPUs, GPUs and TPUs
- 10 100x acceleration

Global data centres

- Easy access to PB-scale data
- 100,000s machines

Three key factors that drive AI booming: Algorithms, Hardware, Data

ML frameworks: A new category of system software

	Neural Networks	Automatic Differentiation	Un/semi- structured data management	Training & Inference	Heterogenous Processors	Distributed Execution
Neural network libraries (Theano, Caffe)	~	~	×	×	~	X
Data parallel systems (Spark, Giraph)	×	×	×	×	X	\checkmark
ML framework (PyTorch, TensorFlow)	~	~	\checkmark	\checkmark	\checkmark	~

System architectures of ML frameworks

1. Programming abstraction: Supporting ML in different applications

2. Execution engine: Enable gradient-based computation & parallelise computation

3. Hardware runtime: utilise all heterogeneous processors

ML framework programming abstraction

An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, ...)

Questions?

Expressing ML programs as computational graphs

How to compute gradients automatically?

Automatic differentiation through the chain rule: Gradient function takes its primitive function (i) <u>inputs</u> and <u>(ii) output</u> as parameters along with the (iii) <u>gradient of the function outputs with respect to the</u> <u>final outputs</u>.

An automatic differentiation example

Discovering parallelism for better performance

Questions?

Frontend and backend languages

Offloading sub-graphs to heterogeneous processors

Problem: Frequently launching C++ kernels (e.g., system calls) in Python has large performance overhead

Discovering Sub-graph

- User annotation to discover sub-graphs: @tf.function (TensorFlow 2), @jit.script (PyTorch)
- Just-in-Time (JIT) compilation: @jit.trace (PyTorch)

Using heterogenous processors

Operators in ML models have execution kernels for CPUs and GPUs

Summary

Benefits

- Simple and flexible frontend
- Full life-cycle support
- Unified expression of computation
- Automatic differentiation
- Enabling **backend execution**: parallelism, offloading, ...
- kernel dispatchers
- Supporting different processors

ML Systems Architecture High-level Front-end Languages (Python)

Reading

- Optional reading
 - Deep learning with PyTorch in 60 minutes
 - TensorFlow white paper
 - <u>PyTorch white paper</u>

Questions?