

Fundamentals for Distributed Machine Learning

University of Edinburgh

Motivation

Gap to be filled by **Distributed ML Systems**

Time

Divide-and-Conquer

(a) Single-worker Execution

(b) Distributed Multi-worker Execution

Why distributed ML systems?

- Performance
 - Reducing the time to complete a data epoch
- Memory wall
- Economy
 - Multiple commodity servers, instead of a single expensive high-end server
- Hardware failure tolerance

Basic execution model

Workers must have sufficient memory to store data, weights, activations & gradients

Otherwise, you get Out-Of-Memory (OOM) exception

Questions?

Parallel training methods

	Single Data	Multiple Data
Single Program	Single-Program-Single-Data (SPSD) Single Worker Training	Single-Program-Multiple-Data (SPMD) Data Parallel Training
Multiple Program	Multiple-Program-Single-Data (MPSD) Model Parallel Training	Multiple-Program-Multiple-Data (MPMD) Hybrid Parallel Training

Data parallel training

Model parallel training: Intra-operator

Model parallel training: Inter-operator

Hybrid parallel training

Questions?

How to choose parallelism methods?

- Empirical parallelism
 - TensorFlow Mesh
- Semi-automatic parallelism
 - Manually partition a few upstream operators and propagate the partitioning to downstream operators
- Automatic parallelism
 - Build a cost model for evaluating different parallel methods
 - Search for the best methods that incur minimal costs

Pipeline parallelism

Creating pipeline by dividing a data partition into **micro-batches**

Optimising micro-batch size

- Small micro-batch reduces bubble size; but incur large micro-batch scheduling overheads
- Large micro-batch incurs large bubble; but come with small micro-batch scheduling overheads
- Optimal micro-batch size must balance bubble size and scheduling overheads

Design aspects of distributed ML systems

- Cluster elasticity
 - Reserving a large number of GPU servers is prohibitively expensive
- Device roles in ML
 - CPUs for data processing, GPUs for training (PyTorch & TensorFlow)
 - This is causing problems in graph learning and reinforcement learning
- Mixed precision training
 - FP8, FP16, FP32, FP64

Summary

- Distributed ML systems are keys to tackle "End of Moore Law"
- Performance and economy benefits
- Spatial parallelism: Data-parallel, model-parallel and hybrid-parallel
- Temporal parallelism: Pipeline parallelism

Reading

- Optional reading
 - <u>PyTorch distributed overview</u>
 - Google GPipe paper

Questions?

Large-Scale System Software Group

- ML system projects (capstone project / final-year projects)
- Open-source project: the 1st open-sourced textbook for ML systems

Personal website: https://luomai.github.io Email: luo.mai@ed.ac.uk

If interested, please send me your CV, transcript, and a description of your interest, and we can arrange a follow-up meeting