

Practical Distributed Machine Learning Systems

University of Edinburgh

Foundation Models

NLP Models:

- GPT-3 (175 billion parameters)
- Switch Transformer (1 trillion parameters)

CV Models:

• Vision Transformers (10s billions parameters)

[1] On the Opportunities and Risks of Foundation Models, 2021

Synchronising Gradients is Network-Intensive

Bandwidth is Limited in Data Centres

Bandwidth-efficient Allreduce

- 7 = 1 + 2 + 4 (first partition)
- 14 = 2 + 4 + 8 (second partition)
- 21 = 3 + 6 + 12 (third partition)

Questions?

Common Collective communication operators

- Collective communication libraries: NVIDIA Collective Communications Library (NCCL), OpenMPI
- Integration with ML frameworks: PyTorch Distributed, Horovod, KungFu

ML Server Architecture

- Memory hierarchy
 - GPU memory bandwidth: ~2000 GB/s
 - System memory bandwidth: ~1600 GB/s
 - SSD: ~20 GB/s
- High-bandwidth networks
 - GPU-GPU direct: NVLink: 600 GB/s
 - CPU-GPU PCIe Switch: 64GB/s
 - Server-Server InfiniBand: 25 GB/s
- ML data placement
 - How to improve data locality?
 - How to reduce data access latency?

Future Systems for Foundation AI Models

- Automatic model parallelism
 - Parallelism cost model + parallelism strategy solver [1]
- Memory-efficient runtime
 - Memory swapping (CPU memory + GPU memory) [2]
- Efficient optimisers for giant AI models
 - Lookahead Optimizer [3]

[1] GSPMD: General and Scalable Parallelization for ML Computation Graphs, 2021
[2] ZeRO-Offload: Democratizing Billion-Scale Model Training, 2021
[3] Lookahead Optimizer: k steps forward, 1 step back, 2020

Questions?

Recommender Systems

Digital Content 2.7 Billion Monthly Active Users E-Commerce 2 Billion Digital Shoppers Social Media 3.8 Billion Active Users Digital Advertising 4.65 Billion User Targeted

Deep Learning Recommender Models

- Tremendous memory cost
- Small computation cost
- Embeddings are **sparsely updated**
- Example: Deep learning recommendation models [1]

[1] DLRM: An advanced, open source deep learning recommendation model, 2020

Parameter Servers

Users/Items Follow Power Law Distribution

Imbalanced workload is common in distributed computing systems

Handling Hot Spots via Data Replication

Future Recommender Systems

- Protecting user privacy
 - Federated Learning (FL)
 - Google Input Method with FL [1]
 - Trusted Execution Environments (TEEs)
 - x86 TEEs (AMD & Intel)
 - GPU TEE (Nvidia), coming soon
- Adaptive recommender engines
 - Updating models in real-time: Ekko [2]

[1] Towards Federated Learning at Scale: System Design, MLSys 2019 [2] Ekko: A Large-Scale Deep Learning Recommender System with Low-Latency Model Update, OSDI 2022

Summary

- Foundation AI models
- Collective communication systems
 - Bandwidth over-subscription, stragglers, failures, high-speed networks
- Deep learning recommendation systems
- Parameter servers
 - Data skews, replications

Reading

- Optional reading
 - <u>Dive into deep learning computational performance</u>

Questions?

Largs-Scale Computer Systems Group https://luomai.github.io