
Cluster Resource Management
Luo Mai

University of Edinburgh

1

Why do we need resource management?

2

Servers in clusters:
• Homogeneous server configuration
• A server can have affluent resources

(e.g., 256 CPUs, 8 GPUs, 1TB
memory, 8TB SSD)

Small
Application 1 Mediuem

Application 2
Large Application 3

Diverse applications:
• Web service
• Data processing
• Machine learning
• …

“One size does not fit all”
- Virtualisation!

Virtual Machines

3

A Virtual Machine (VM) is an emulation of a physical computer. A hypervisor is a type of
computer software, firmware or hardware that creates and runs VMs.

Host (Server)

Hypervisor

Guest OS

App.

Type 1 - Native Type 2 - Hosted

VM

Guest OS

App.

VM

Host (Server)

Hypervisor

Guest OS

App.

VM

Guest OS

App.

VM

Host OS

Type 1 hypervisors (Native)
- KVM, VMWare vSphere, …

Type 2 hypervisors (Hosted)
- Virtualbox, VMWare Fusion

Type 1 vs. Type 2
- Cost / Scale
- Portability

Types of Virtualisation

4

Different types of virtualisation shift the focus on
different properties such as execution speed,

flexibility and security.

● Software Emulation (e.g., QEMU)
● Hardware Virtualisation (e.g., KVM)
● Paravirtualisation (e.g., Xen [1] - Optional reading)

[1] Xen and the Art of Virtualization, SOSP 2003

Software Emulation

5

Execution of each guest instruction
is emulated in software

highly flexible, e.g. cross-
architecture simulation

slow to run - high overhead

speedup can be achieved using
binary translation

Software Emulation

6

Qemu is a hosted hypervisor
● emulates hardware
● uses binary translation to speed up execution
● allows cross-architecture virtualisation

supporting many architecture models

Full System or Hardware Virtualisation

7

Guest OS instructions can be executed
natively on the host CPU

Near native speed

Less flexible - same architecture
simulation

How can you make sure a guest OS does not disturb the
underlying host when directly running on Hardware?

Kernel Mode vs. User Mode in Guest OS

8

Kernel Mode

● Code has unrestricted access
to hardware

● Reserved for the lowest level,
most trusted functions of OS

User Mode

● Code has no ability to directly
access hardware or reference
memory

OS Privilege Levels

How to handle privileged instructions?

9

Trap-and-Emulate
○ The guest operating system runs “de-privileged”, all non-privileged instructions execute

natively on the host.
○ All privileged instructions trap to the Virtual Machine Manager (VMM) which implements

the ”Hypervisor”
○ VMM emulates these privileged operations.
○ Guest resumes execution after emulation.

...
push %rax
mov (%rbp), %rax
mov %rax, %cr3
pop %rax
...

VMM
Emulates instruction

Problem: Not all privileged x86
instructions trap properly!

Virtualising x86

10

● Originally x86 was not “classically” virtualisable.
○ Some privileged instructions did not “trap”, and so could not be emulated correctly.

● Interpretation is too slow
● Code Patching leaves traces of virtualisation
● Binary Translation is better but still incurs overhead.
● Since 2005, x86 processors now support virtualisation in hardware.

○ Intel-VT
○ AMD-V

● This enables trap-and-emulate style virtualisation.
● Unmodified operating systems can run natively on host machines.

11

sub $16, %rsp
mov %rax, -4(%rbp)
...

Physical
Machine

(operating system)

Virtual
Machine

(operating system)

vmxon
…
…
vmenter mov %rax, %rbx

push $2
popfhandle_trap:

…
…
vmenter

Hardware

Operating System

Hypervisor Apps

Apps

Apps

Apps

Apps

Operating System

Physical Machine

Apps

Apps

Virtualising x86 on modern hardware

Benefits and Pricing Models of Cloud VMs

12

Benefits
• Cost savings
• Flexibility + Speed
• Lower downtime
• Security

Pricing models
• Pay-as-you-go
• Spot/Transient instances
• Reserved instances

Host (Server)

Type 1 Hypervisor

Guest OS

App.

VM

Bins Libs

Virtual Hardware

Guest OS

App.

VM

Bins Libs

Virtual Hardware

Questions?

13

Containers – OS-Level Virtualisation

14

Containers are a lighter-weight, more agile way of handling virtualization — since they don't use
a hypervisor, you can enjoy faster resource provisioning and speedier availability of new applications.

Host (Server)

Operating System

App.

Container

Bins Libs

App.

Bins Libs

Container

https://www.ibm.com/cloud/learn/containers

How can containerisation be achieved?
● provide user space abstraction for each container

○ isolated view at the system for container content

● provide a container management system to manage container instances and
standardised access to contents

15

Chroot
● Linux processes have a root

directory
● chroot changes the root

directory for a new process and
its children

● such a jailed process cannot
access files outside its root
directory structure

16

Chroot
Limitations

● you can break out of a chroot
jail with root privileges

● no resource limits
○ memory, cpu

● no isolation
○ network, devices, processes

17Not a secure sandbox!

How to limit resources and achieve isolation?

● control groups - limit what you can use
○ resource control

● namespaces - limit what you can see
○ isolated view at system

18

Resource control through cgroups
Linux kernel feature to limit account and
isolate resource usage for groups of
processes

● cpu
● memory
● disk I/O
● devices
● network
● etc. ...

19

Isolation through namespaces
Namespaces provide containers with their own view of the underlying Linux
system.

● NET: IP addresses, IP routing tables, port numbers
● PID: process IDs
● MNT: system mounts
● UTS: host name
● IPC: inter process communication resources
● USER: user ids

20

Docker
Container
under the
hood

21

The Docker Eco-System

22

● Docker Engine: docker runtimer
containing: Deamon, Client and API for
remote access

● Dockerfile: contains instructions to build a
docker image

● Image: layered read-only file system
described by dockerfile

● Volumes: shared “data” part of a container
● Container: wraps application code and

dependencies as described in image
● Docker Registry: server side app to share

and distribute images

Docker Images

23

● Docker file describes docker image
● start with a base image
● layer dependencies on top
● Union file system

Docker Images

24

Docker File

Docker Images

25

VMs vs. Containers

26

VM

• Heavy-weight in terms of layers of system
software (GBs in size)

• Take minutes to start

• Allows multiple OS to execute
concurrently

• Provide a high level of isolation
• Fault
• Resource

Containers

• Light-weight (MBs in size)
• Take seconds to start

• Share a common OS and kernel

• Don’t offer the same level of isolation
• A kernel crash caused by one guest will

affect everyone else

• The interface offered is at the level of system calls
and ABI – much more prone to security problems
than the API exposed by the Hypervisor

How to choose virtualisation?

27

Without
Container

With
Conatiner

Without VM Bare-mantal Contrainer

With VM VM Container in
VM

Considerations
• Virtualisation costs

• Some hardware does not support virtualisation
• Virtualisation is not free

• Scale
• What is the best way to communicate? NVLink, shared

memory, socket, REST
• Security

• What if your container or VM is compromised?
• Isolation

• Multi-user vs. Single-user with multi-job
• Flexibility

• Multi-OS vs. Single-OS

Questions?

28

Kubernetes - Container Orchestration

29

Kubernetes — also known as “k8s” — is a container orchestration platform for scheduling and
automating the deployment, management, and scaling of containerized applications.

• Masters run special coordinating software that schedules
containers on the nodes.

• Worker machines are called nodes.
• Each machine hosts 1+ Docker container.

A bunch of machines sit networked
together in many data centres.

The collection of masters and nodes is
known as a cluster.

The Master

30

1. API server
1. Nearly all components of the master and nodes

accomplish their tasks by making API calls.
2. These calls are handled by the API server running

on the master.

2. Scheduler and Controller Manager
1. Processes that schedule containers (i.e., pods)

onto target nodes.
2. Make sure that the correct number of these things

are always running.

3. etcd – distributed reliable key-value store
1. Responsible to keep and replicate the current

configuration and run state of the cluster.
2. Implemented as light-weight distributed KV store.

The nodes

31

1. Kubelet
1. special background process (daemon)
2. execute commands from the master to create,

destroy, and monitor containers on that host.

2. Kube-proxy
1. simple network proxy to separate the IP address

of target container from the name of the service it
provides.

3. cAdvisor (optional)
1. is a special daemon that collects, aggregates,

processes, and exports information about the
running containers.

Full picture of a Kubenetes cluster

32

Pod

33

• A pod is a collection of containers that are bundled and
scheduled together because they share a common
resource – usually a file system or IP address.

• Pod serves as Kubernetes’ core unit of management.

• Pods make up the difference between containerization
and virtualization by making it possible to run multiple
dependent processes together.

• At runtime, pods can be scaled by creating replica sets.

Why not just run multiple programs in a single container?

34

1. Transparency
1. 1+ process in a container – you are responsible for monitoring and managing the resources

each uses.
2. By separating logical units of work into separate containers – Kubernetes can manage for you
3. Makes things easier to debug and fix.

2. Deployment and Maintenance
1. Individual containers can be rebuilt and redeployed by you whenever you make a software

change.
2. This decoupling of deployment dependencies will make your development and testing faster.
3. It also makes it super easy to rollback in case there is a problem.

3. Efficiency
1. The infrastructure takes on more responsibility, so the containers can be lighter-weight.

Cluster Management Example with k8s

35

Client

Frontend (F)

Backend (B)

Database (D)

Client

Node 1

F
Pod

F
Pod

B
Pod

B
Pod

B
Pod

D
Pod

K8s functionalities:
• Deployment
• Rollouts
• Service discovery
• Storage & networking
• Load balancing & scaling
• Failure recovery

Web Service (Logical View) Web Service (Physical View)

Node 2 Node 3
Load

balancer

Pod replicas

Questions?

36

