Text Technologies for Data Science

INFR11145

Text Classification

Instructor:
Björn Ross
Pre-Lecture

• Today
 • Lecture 1 (Text classification): Theory
 • Coursework 2 overview
 • Lecture 2 (Text classification): Practical
Lecture Objectives

• **Learn** about text basics of text classification
 • Definition
 • Types
 • Methods
 • Evaluation
Text Classification

• **Text classification** is the process of classifying documents into predefined categories based on their content.

- **Input:** Text (document, article, sentence)
- **Task:** Classify into predefined one/multiple categories
- **Categories:**
 - Binary: relevant/irrelevant, spam .. etc.
 - Few: sports/politics/comedy/technology
 - Hierarchical: patents
Classification is and is not

- Classification (a.k.a. “categorization”): a common technology in data science; studied within pattern recognition, statistics, and machine learning.

- Definition: the activity of predicting to which among a predefined finite set of groups (“classes”, or “categories”) a data item belongs to

- Formulated as the task of generating a hypothesis (or “classifier”, or “model”)

\[h : D \rightarrow C \]

where \(D = \{x_1, x_2, \ldots\} \) is a domain of data items and \(C = \{c_1, \ldots, c_n\} \) is a finite set of classes (the classification scheme)
Classification is and is not

- Different from clustering, where the groups ("clusters") and their number are not known in advance
- Unsuitable when class membership can be determined with certainty (relatively easily)
 - e.g., predicting whether a natural number belongs to Prime or Non-Prime is not classification
- In text classification, data items are
 - Textual: e.g., news articles, emails, sentences, queries, etc.
 - Partly textual: e.g., Web pages
Types of Classification

• **Binary:**
 item to be classified into one of two classes
 \(h : D \rightarrow C, \quad C = \{c_1, c_2\} \)
 - e.g., Spam/not spam, offensive/not offensive, rel/irrel

• **Single-Label Multi-Class (SLMC)**
 item to be classified into only one of \(n \) possible classes.
 \(h : D \rightarrow C, \quad C = \{c_1, \ldots, c_n\}, \text{ where } n>2 \)
 - e.g., Sports/politics/entertainment, positive/negative/neutral

• **Multi-Label Multi-Class (MLMC)**
 item to be classified into none, one, two, or more classes
 \(h : D \rightarrow 2^C, \quad C = \{c_1, \ldots, c_n\}, \text{ where } n>1 \)
 - e.g., Assigning CS articles to classes in the ACM Classification System
 - Usually be solved as \(n \) independent binary classification problems
Dimension of Classification

• Text classification may be performed according to several dimensions ("axes") orthogonal to each other
• by topic; by far the most frequent case, its applications are global
• by sentiment; useful in market research, online reputation management, social science and political science
• by language (a.k.a. "language identification"); useful, e.g., in query processing within search engines
• by genre; e.g., AutomotiveNews vs. AutomotiveBlogs, useful in website classification and others;
• by author (a.k.a. "authorship attribution"), by native language ("native language identification"), or by gender; useful in forensics and cybersecurity
• by usefulness; e.g., product reviews
• ……
Rule-based classification

- An old-fashioned way to build text classifiers was via knowledge engineering, i.e., manually building classification rules
 - E.g., (Viagra or Sildenafil or Cialis) → Spam
 - E.g. (#MAGA or America great again) → support Trump
- Common type: dictionary-based classification
- Disadvantages:
 - Expensive to setup and to maintain
 - Depends on few keywords → bad coverage (recall)
Zero-shot classification

- Using machine learning models for classification without giving training examples
 - A modern approach that can work well and requires little human effort
 - Depends highly on black-box models, limited opportunities for customisation and error analysis (but this is an active research area)
 - Often used as a baseline for performance comparisons

You
Consider the following sentence: "I love the book." What sentiment is it? Your reply must be one of the following words: positive, neutral, or negative.

ChatGPT
Positive.
Supervised-learning classification

- A generic (task-independent) learning algorithm is used to train a classifier from a set of manually classified examples.
- The classifier learns, from these training examples, the characteristics a new text should have in order to be assigned to class c.
- Advantages:
 - Generating training examples cheaper than writing classification rules.
 - Easy update to changing conditions (e.g., addition of new classes, deletion of existing classes, shifted meaning of existing classes, etc.).
Supervised-learning classification

Documents to be classified → Manually Label Sample → Extract Features → Classified Documents

Labelled sample (training data) → Train a Classifier → Classification Model
Extract Features

- In order to be input to a learning algorithm (or a classifier), all training (or unlabeled) documents are converted into vectors in a common vector space.
- The dimensions of the vector space are called features.
- In order to generate a vector-based representation for a set of documents D, the following steps need to be taken:
 1. Feature Extraction
 2. Feature Selection or Feature Synthesis (optional)
 3. Feature Weighting
Step 1: Feature Extraction

• What are the features that should be different from one class to another?

• Simplest form: Bag-of-words (BOW)
 • Each term in a document is a feature
 • Feature space size = vocabulary in all docs
 • Standard IR preprocessing steps are usually applied
 • Tokenisation, stopping, stemming

• Other simple features forms:
 • Word n-grams (bigrams, trigrams, ….)
 • Much larger + more sparse
 • Sometimes char n-grams are used
 • Especially for degraded text (OCR or ASR outputs)
Step 1: Feature Extraction

• What other text features could be used?

• Sentence structure:
 • POS (part-of-speech tags)
 • Syntactic tree structure

• Topic-based features:
 • LDA topics
 • NEs (named entities) in text
 • Links / Linked terms

• Non-textual features:
 • Average doc\sentence\word length
 • % of words start with upper-case letter
 • % of links/hashtags/emojis in text
Step 1: Feature Extraction

- What preprocessing to apply?
 - Case-folding? really vs Really vs REALLY
 - Punctuation? “?” , “!” , “@” , “#”
 - Stopping? “he” , “she” , “what” , “but”
 - Stemming? “replaced” vs “replacement”

- Other Features:
 - Starts with capital letter, all caps
 - Repeated characters “congraaaaaats” “help!!!!!!!!!”
 - Scores from dictionaries and lexicons (e.g. LIWC)

- Which to choose?
 - Classification task/application
Step 2: Feature Selection

- Number of distinctive features = length of feature vector
- Vector can be of length in the order of 10^6, and might be sparse
 - High computational cost
 - Overfitting
- What are the most important features among those?
 - e.g. Reduce from 10^6 to 10^4
- For each class, find the top representative k features for it → get the Union over all classes → reduced feature space
Step 2: Feature Selection Functions

• **Document frequency**
 - % of docs in class c_i that contain the term t_k
 - Very basic measure. Will select stop words as features
 $$\#(t_k, c_i) = P(t_k | c_i)$$

• **Mutual Information**
 - How much we learn from the presence or absence of term t_k about whether or not a document is in class c_i
 - Often used in feature selection in text classification
 $$MI(t_k, c_i) = \sum_{c \in \{c_i, \bar{c}_i\}} \sum_{t \in \{t_k, \bar{t}_k\}} P(t, c) \cdot \log_2 \frac{P(t, c)}{P(t) \cdot P(c)}$$

• **Pearson’s Chi-squared (χ^2)**
 - used more in comparisons between classes
Step 2: Feature Selection Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Denoted by</th>
<th>Mathematical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document frequency</td>
<td>$#(t_k, c_i)$</td>
<td>$P(t_k</td>
</tr>
<tr>
<td>DIA association factor</td>
<td>$z(t_k, c_i)$</td>
<td>$P(c_i</td>
</tr>
<tr>
<td>Information gain</td>
<td>$IG(t_k, c_i)$</td>
<td>[\sum_{c \in {c_i, \overline{c_i}}} \sum_{t \in {t_k, \overline{t_k}}} P(t, c) \cdot \log \frac{P(t, c)}{P(t) \cdot P(c)}]</td>
</tr>
<tr>
<td>Mutual information</td>
<td>$MI(t_k, c_i)$</td>
<td>$\log \frac{P(t_k</td>
</tr>
<tr>
<td>Chi-square</td>
<td>$\chi^2(t_k, c_i)$</td>
<td>[\frac{[Tr] \cdot [P(t_k, c_i) \cdot P(\overline{t_k}, \overline{c_i}) - P(t_k, \overline{c_i}) \cdot P(\overline{t_k}, c_i)]^2}{P(t_k) \cdot P(\overline{t_k}) \cdot P(c_i) \cdot P(\overline{c_i})}]</td>
</tr>
<tr>
<td>NGL coefficient</td>
<td>$NGL(t_k, c_i)$</td>
<td>[\sqrt{[Tr] \cdot [P(t_k, c_i) \cdot P(\overline{t_k}, \overline{c_i}) - P(t_k, \overline{c_i}) \cdot P(\overline{t_k}, c_i)]}] [\frac{\sqrt{P(t_k) \cdot P(\overline{t_k}) \cdot P(c_i) \cdot P(\overline{c_i})}}{\sqrt{P(t_k) \cdot P(\overline{t_k}) \cdot P(c_i) \cdot P(\overline{c_i})}}]</td>
</tr>
<tr>
<td>Relevancy score</td>
<td>$RS(t_k, c_i)$</td>
<td>$\log \frac{P(t_k</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>$OR(t_k, c_i)$</td>
<td>$\frac{P(t_k</td>
</tr>
<tr>
<td>GSS coefficient</td>
<td>$GSS(t_k, c_i)$</td>
<td>$P(t_k, c_i) \cdot P(\overline{t_k}, \overline{c_i}) - P(t_k, \overline{c_i}) \cdot P(\overline{t_k}, c_i)$</td>
</tr>
</tbody>
</table>
Step 2: Feature Synthesis

- **Matrix decomposition techniques** (e.g., PCA, SVD, LSI) can be used to synthesize new features that replace the features discussed above.

- **Principle of distributional semantics**: semantics of a word “is” the words it co-occurs with.
 - **Pros**: the synthetic features in the new vector representation do not suffer from problems such as polysemy and synonymy.
 - **Cons**: computationally expensive.

- **Word embeddings**: the new wave of distributional semantics, modern approaches are based on neural networks.
 - **PCA**: Principle component analysis
 - **SVD**: Singular value decomposition
 - **LSA**: latent semantic analysis
Step 2: Feature Synthesis

- Deep learning?
- Language modelling “features”
 - Tokenize text and pass to neural network layer
 - E.g., recurrent layer, convolutional layer, self-attention layer
 - Stack on 3+ more layers
 - Train a model to predict the next word (or a missing word) given previous words
 - Penultimate layer of network can be used to generate features for other language-based tasks
 - Basis for many state-of-the-art text classifiers
 - e.g. BERT (DistilBERT, RoBERTa..), XLNet, etc.
Step 3: Feature Weighting

- Attributing a value to feature t_k in document d_i
 This value may be
 - binary (representing presence/absence of t_k in d_i);
 - numeric (representing the importance of t_k for d_i);

obtained via feature weighting functions in the following two classes:
 - unsupervised: e.g., tfidf or BM25,
 - supervised: e.g., $tf \cdot MI$, $tf \cdot x^2$

- Similarity between two vectors may be computed e.g. via cosine similarity

- Scaling can be important!
Supervised-learning classification

Documents to be classified

Manually Label Sample

Labelled sample (training data)

Extract Features

Classified Documents

Classified Model

Train a Classifier
Training a Classifier

• For binary classification, essentially any supervised learning algorithm can be used for training a classifier; classical choices include
 • Support vector machines (SVMs)
 • Random forests
 • Naïve Bayesian methods
 • Lazy learning methods (e.g., k-NN)
 • Logistic Regression
 •

• The “No-free-lunch principle” (Wolpert, 1996) → there is no learning algorithm that can outperform all others in all contexts

• Implementations need to cater for
 • the very high dimensionality
 • the sparse nature of the representations involved
Training a Classifier

• For **Multiclass classification**, some learning algorithms for binary classification are “SLMC-ready”; e.g.
 • Decision trees
 • Random forests
 • Naive Bayesian methods
 • Lazy learning methods (e.g., k-NN)
 • Neural networks

• For other learners (notably: SVMs) to be used for SLMC classification, combinations / cascades of the binary versions need to be used
 • e.g. multi-class classification SVM
 • Could be directly used for MLMC as well
Holding out test data

• It’s important to avoid overfitting

• Labelled data could be split into two parts
 • Training: used to train the classifier (e.g. 80% of the data)
 • Test: used to test the performance of the trained classifier on unseen data (e.g. 20% of the data)
Hyperparameter optimisation

• Most classifiers have some hyperparameters to be optimized (we will usually refer to the ones we set manually as “hyperparameters” to distinguish from the ”learned” parameters/weights of the model)
 • The C parameter in soft-margin SVMs
 • The r, d parameters of non-linear kernels
 • Decision threshold for binary SVM

• Usually labelled data is split into three parts
 • Training: used to train the classifier (typically 80% of the data)
 • Development: used to optimise hyperparameters. Apply the classifier on this data with different values of the hyperparameters and report the one that achieves the highest results (usually 10% of the data)
 • Test: used to test the performance of the trained classifier with the optimal hyperparameters on these unseen data (usually 10% of the data)

• Optimising the hyperparameters on test data is cheating!
Cross-Validation

• Sometimes the amount of labelled data in hand is limited (e.g. 200 samples). Having evaluation of a set of 20 samples only might be misleading

• Cross-validation is used to train the classifier with all data and test on all data without “cheating”

• Idea:
 • Split the labelled data into n folds
 • Train classifier on n-1 fold and test on the remaining one
 • Repeat n times

• **5-fold cross validation**

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Evaluation

• Effectiveness (e.g. accuracy, precision, recall, F1):
 • Global effectiveness measures
 • Per class effectiveness measures

• Efficiency:
 • Speed in learning
 • SVM with linear kernel is known to be fast
 • DNNs are known to be much slower (specially with large # layers)
 • Speed in classification
 • K-NNs are known to be one of the slowest
 • Speed in feature extraction
 • BOW vs POS vs Link analysis features

• Importance of baselines
Evaluation: Baselines

• There are standard methods for creating baselines in text classification to compare your classifier with

• Most popular/simplest baselines
 • Random classification
 • Classes are assigned randomly
 • How much better is the classifier doing than random?
 • Majority class baseline
 • Assign all elements to the class that appears the most
 • How much better you are doing than if you always picked the same thing output regardless of input?
 • Simple algorithm, e.g. BOW
 • Usually used when you introduce new interesting features
Evaluation: Binary Classification

• Accuracy:
 • How many of the samples are classified correctly?
• $A = \frac{4+5}{10} = 0.9$
Evaluation: Binary Classification

- A = (1+6)/10 = 0.7 System 1
- A = (0+7)/10 = 0.7 System 2

- When classes are highly unbalanced
 - Precision/recall/F1 for the rare class
 - e.g. Spam classification (detection)
Evaluation: Binary Classification

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>$1/3 = 0.33$</td>
<td>$0/1 = 0$</td>
</tr>
<tr>
<td>Recall</td>
<td>$1/2 = 0.5$</td>
<td>$0/2 = 0$</td>
</tr>
<tr>
<td>F1</td>
<td>0.4</td>
<td>0</td>
</tr>
</tbody>
</table>

System 1

System 2

C1

C2
Evaluation: Multi-class

- Accuracy = \(\frac{3+3+1}{10} = 0.7 \)

- Good measure when
 - Classes are nearly balanced

- Preferred:
 - Precision/recall/F1 for each class

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.75</td>
<td>1</td>
<td>0.333</td>
</tr>
<tr>
<td>R</td>
<td>0.75</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>F1</td>
<td>0.75</td>
<td>0.86</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- **Macro-F1**
 \[
 \frac{0.75 + 0.86 + 0.4}{3} = 0.67
 \]
Evaluation: Multi-class

• Majority class baseline
 • Accuracy = 0.8
 • Macro-F1 = 0.296

• Macro-F1:
 • Should be used in binary classification when two classes are important
 • e.g.: males/females while distribution is 80/20%
Error Analysis

- **Confusion Matrix**

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C_2</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Useful:**
 - Find classes that are confused with others
 - Develop better features to solve the problem
Summary

• Text Classification tasks
• Feature extraction/selection/synthesis/weighting
• Learning algorithms
• Baselines
• Evaluation measures
 • Accuracy/precision/recall/Macro-F1
Resources

- Fabrizio Sebastiani
 Machine Learning in Automated Text Categorization
 ACM Computing Surveys, 2002

- Yoav Goldberg
 A Primer on Neural Network Models for Natural Language Processing
 Link: https://arxiv.org/abs/1510.00726