

Text Technologies for Data Science INFR11145

Text Classification

Instructor: **Björn Ross**

Pre-Lecture

- Today
 - Lecture 1 (Text classification): Theory
 - Coursework 2 overview
 - Lecture 2 (Text classification): Practical

Lecture Objectives

- Learn about text basics of text classification
 - Definition
 - Types
 - Methods
 - Evaluation

Text Classification

 Text classification is the process of <u>classifying</u> documents into <u>predefined categories</u> based on their content.

- Input: Text (document, article, sentence)
- Task: Classify into predefined one/multiple categories
- Categories:
 - Binary: relevant/irrelevant, spam .. etc.
 - Few: sports/politics/comedy/technology
 - Hierarchical: patents

Classification is and is not

- Classification (a.k.a. "categorization"): a common technology in data science; studied within pattern recognition, statistics, and machine learning.
- Definition:
 the activity of predicting to which among a predefined finite set of groups ("classes", or "categories") a data item belongs to
- Formulated as the task of generating a hypothesis (or "classifier", or "model")

 $h: D \rightarrow C$

where D = $\{x_1, x_2, ...\}$ is a domain of data items and C = $\{c_1, ..., c_n\}$ is a finite set of classes (the classification scheme)

Classification is and is not

- Different from <u>clustering</u>, where the groups ("clusters") and their number are not known in advance
- Unsuitable when class membership can be determined with certainty (relatively easily)
 - e.g., predicting whether a natural number belongs to *Prime* or *Non-Prime* is not classification
- In text classification, data items are
 - Textual: e.g., news articles, emails, sentences, queries, etc.
 - Partly textual: e.g., Web pages

Types of Classification

Binary:

item to be classified into one of two classes

$$h: D \to C, C = \{c_1, c_2\}$$

- e.g., Spam/not spam, offensive/not offensive, rel/irrel
- Single-Label Multi-Class (SLMC) item to be classified into only one of *n* possible classes.

$$h: D \rightarrow C$$
, $C = \{c_1 \dots c_n\}$, where n>2

- e.g., Sports/politics/entertainment, positive/negative/neutral
- Multi-Label Multi-Class (MLMC) item to be classified into none, one, two, or more classes $h: D \rightarrow 2^C$, $C = \{c_1 \dots c_n\}$, where n>1
 - e.g., Assigning CS articles to classes in the ACM Classification System
 - Usually be solved as n independent binary classification problems

Dimension of Classification

- Text classification may be performed according to several dimensions ("axes") orthogonal to each other
- by topic; by far the most frequent case, its applications are global
- by sentiment; useful in market research, online reputation management, social science and political science
- by language (a.k.a. "language identification"); useful, e.g., in query processing within search engines
- by genre; e.g., AutomotiveNews vs. AutomotiveBlogs, useful in website classification and others;
- by author (a.k.a. "authorship attribution"), by native language ("native language identification"), or by gender; useful in forensics and cybersecurity
- by usefulness; e.g., product reviews

•

Rule-based classification

- An old-fashioned way to build text classifiers was via knowledge engineering, i.e., manually building classification rules
 - E.g., (Viagra or Sildenafil or Cialis) → Spam
 - E.g. (#MAGA or America great again) → support Trump
- Common type: dictionary-based classification
- Disadvantages:
 - Expensive to setup and to maintain
 - Depends on few keywords → bad coverage (recall)

Zero-shot classification

- Using machine learning models for classification without giving training examples
 - A modern approach that can work well and requires little human effort
 - Depends highly on black-box models, limited opportunities for customisation and error analysis (but this is an active research area)
 - Often used as a baseline for performance comparisons

Supervised-learning classification

- A generic (task-independent) learning algorithm is used to train a classifier from a set of manually classified examples
- The classifier learns, from these training examples, the characteristics a new text should have in order to be assigned to class c
- Advantages:
 - Generating training examples cheaper than writing classification rules
 - Easy update to changing conditions (e.g., addition of new classes, deletion of existing classes, shifted meaning of existing classes, etc.)

Supervised-learning classification

Extract Features

- In order to be input to a learning algorithm (or a classifier), all training (or unlabeled) documents are converted into vectors in a common vector space
- The dimensions of the vector space are called features
- In order to generate a vector-based representation for a set of documents D, the following steps need to be taken
 - 1. Feature Extraction
 - 2. Feature Selection or Feature Synthesis (optional)
 - 3. Feature Weighting

Step 1: Feature Extraction

- What are the features that should be different from one class to another?
- Simplest form: Bag-of-words (BOW)
 - Each term in a document is a feature
 - Feature space size = vocabulary in all docs
 - Standard IR preprocessing steps are usually applied
 - Tokenisation, stopping, stemming
- Other simple features forms:
 - Word n-grams (bigrams, trigrams,)
 - Much larger + more sparse
 - Sometimes char n-grams are used
 - Especially for degraded text (OCR or ASR outputs)

Step 1: Feature Extraction

- What other text features could be used?
- Sentence structure:
 - POS (part-of-speech tags)
 - Syntactic tree structure
- Topic-based features:
 - LDA topics
 - NEs (named entities) in text
 - Links / Linked terms
- Non-textual features:
 - Average doc\sentence\word length
 - % of words start with upper-case letter
 - % of links/hashtags/emojis in text

Step 1: Feature Extraction

- What preprocessing to apply?
 - Case-folding? really vs Really vs REALLY
 - Punctuation? "?", "!", "@", "#"
 - Stopping? "he", "she", "what", "but"
 - Stemming? "replaced" vs "replacement"
- Other Features:
 - Starts with capital letter, all caps
 - Repeated characters "congraaaaaats" "help!!!!!!!"
 - Scores from dictionaries and lexicons (e.g. LIWC)
- Which to choose?
 - Classification task/application

Step 2: Feature Selection

- Number of distinctive features = length of feature vector
- Vector can be of length in the order of 10⁶, and might be sparse
 - → High computational cost
 - → Overfitting
- What are the most important features among those?
 - e.g. Reduce from 10⁶ to 10⁴
- For each class, find the top representative k features for it → get the Union over all classes → reduced feature space

Step 2: Feature Selection Functions

- Document frequency
 - % of docs in class c_i that contain the term t_k
 - Very basic measure. Will select stop words as features

$$\#(t_k, c_i) = P(t_k | c_i)$$

- Mutual Information
 - How much we learn from the presence or absence of term t_k about whether or not a document is in class c_i
 - Often used in feature selection in text classification

$$MI(t_k, c_i) = \sum_{c \in \{c_i, \bar{c}_i\}} \sum_{t \in \{t_k, \bar{t}_k\}} P(t, c) \cdot \log_2 \frac{P(t, c)}{P(t) \cdot P(c)}$$

- Pearson's Chi-squared (x^2)
 - used more in comparisons between classes

Step 2: Feature Selection Functions

Function	Denoted by	Mathematical form
Document frequency	$\#(t_k, c_i)$	$P(t_k c_i)$
DIA association factor	$z(t_k,c_i)$	$P(c_i t_k)$
Information gain	$IG(t_k, c_i)$	$\sum_{c \in \{c_i, \overline{c}_i\}} \sum_{t \in \{t_k, \overline{t}_k\}} P(t, c) \cdot \log \frac{P(t, c)}{P(t) \cdot P(c)}$
Mutual information	$MI(t_k, c_i)$	$\log \frac{P(t_k, c_i)}{P(t_k) \cdot P(c_i)}$
Chi-square	$\chi^2(t_k,c_i)$	$\frac{ Tr \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]^2}{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}$
NGL coefficient	$NGL(t_k, c_i)$	$\frac{\sqrt{ Tr } \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]}{\sqrt{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}}$
Relevancy score	$RS(t_k, c_i)$	$\log \frac{P(t_k c_i) + d}{P(\overline{t}_k \overline{c}_i) + d}$
Odds Ratio	$OR(t_k, c_i)$	$\frac{P(t_k c_i) \cdot (1 - P(t_k \overline{c}_i))}{(1 - P(t_k c_i)) \cdot P(t_k \overline{c}_i)}$
GSS coefficient	$GSS(t_k, c_i)$	$P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)$

Step 2: Feature Synthesis

- Matrix decomposition techniques (e.g., PCA, SVD, LSI) can be used to synthesize new features that replace the features discussed above
- Principle of distributional semantics: semantics of a word "is" the words it co-occurs with
 - Pros: the synthetic features in the new vector representation do not suffer from problems such as polysemy and synonymy
 - Cons: computationally expensive
- Word embeddings: the new wave of distributional semantics, modern approaches are based on neural networks
- PCA: Principle component analysis
- SVD: Singular value decomposition
- LSA: latent semantic analysis

Step 2: Feature Synthesis

- Deep learning?
- Language modelling "features"
 - Tokenize text and pass to neural network layer
 - E.g., recurrent layer, convolutional layer, self-attention layer
 - Stack on 3+ more layers
 - Train a model to predict the next word (or a missing word) given previous words
 - Penultimate layer of network can be used to generate features for other language-based tasks
 - Basis for many state-of-the-art text classifiers
 - e.g. BERT (DistilBERT, RoBERTa..), XLNet, etc.

Step 3: Feature Weighting

- Attributing a value to feature t_k in document d_i This value may be
 - binary (representing presence/absence of t_k in d_i);
 - numeric (representing the importance of t_k for d_i); obtained via feature weighting functions in the following two classes:
 - unsupervised: e.g., tfidf or BM25,
 - supervised: e.g., tf * MI, tf * x²
- Similarity between two vectors may be computed e.g. via cosine similarity
- Scaling can be important!

Supervised-learning classification

Training a Classifier

- For binary classification, essentially any supervised learning algorithm can be used for training a classifier; classical choices include
 - Support vector machines (SVMs)
 - Random forests
 - Naïve Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Logistic Regression
 - •
- The "No-free-lunch principle" (Wolpert, 1996) → there is no learning algorithm that can outperform all others in all contexts
- Implementations need to cater for
 - the very high dimensionality
 - the sparse nature of the representations involved

Training a Classifier

- For Multiclass classification, some learning algorithms for binary classification are "SLMC-ready"; e.g.
 - Decision trees
 - Random forests
 - Naive Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Neural networks
- For other learners (notably: SVMs) to be used for SLMC classification, combinations / cascades of the binary versions need to be used
 - e.g. multi-class classification SVM
 - Could be directly used for MLMC as well

Holding out test data

- It's important to avoid overfitting
- Labelled data could be split into two parts
 - Training: used to train the classifier (e.g. 80% of the data)
 - Test: used to test the performance of the trained classifier on unseen data (e.g. 20% of the data)

Hyperparameter optimisation

- Most classifiers have some hyperparameters to be optimized (we will usually refer to the ones we set manually as "hyperparameters" to distinguish from the "learned" parameters/weights of the model)
 - The C parameter in soft-margin SVMs
 - The *r*, *d* parameters of non-linear kernels
 - Decision threshold for binary SVM
- Usually labelled data is split into three parts
 - Training: used to train the classifier (typically 80% of the data)
 - Development: used to optimise hyperparameters. Apply the classifier on this data with different values of the hyperparameters and report the one that achieves the highest results (usually 10% of the data)
 - Test: used to test the performance of the trained classifier with the optimal hyperparameters on these unseen data (usually 10% of the data)
- Optimising the hyperparameters on test data is cheating!

Cross-Validation

- Sometimes the amount of labelled data in hand is limited (e.g. 200 samples). Having evaluation of a set of 20 samples only might be misleading
- Cross-validation is used to train the classifier with all data and test on all data without "cheating"
- Idea:
 - Split the labelled data into n folds
 - Train classifier on n-1 fold and test on the remaining one
 - Repeat *n* times
- 5-fold cross validation

Training	Test
----------	------

1
2
3
4
5

Evaluation

- Effectiveness (e.g. accuracy, precision, recall, F1):
 - Global effectiveness measures
 - Per class effectiveness measures
- Efficiency:
 - Speed in learning
 - SVM with linear kernel is known to be fast
 - DNNs are known to be much slower (specially with large # layers)
 - Speed in classification
 - K-NNs are known to be one of the slowest
 - Speed in feature extraction
 - BOW vs POS vs Link analysis features
- Importance of baselines

Evaluation: Baselines

- There are standard methods for creating baselines in text classification to compare your classifier with
- Most popular/simplest baselines
 - Random classification
 - Classes are assigned randomly
 - How much better is the classifier doing than random?
 - Majority class baseline
 - Assign all elements to the class that appears the most
 - How much better you are doing than if you always picked the same thing output regardless of input?
 - Simple algorithm, e.g. BOW
 - Usually used when you introduce new interesting features

Evaluation: Binary Classification

- Accuracy:
 - How many of the samples are classified correctly?
- A = (4+5)/10 = 0.9

Evaluation: Binary Classification

- A = (1+6)/10 = 0.7 System 1
- A = (0+7)/10 = 0.7 System 2
- When classes are highly unbalanced
 - Precision/recall/F1 for the rare class
 - e.g. Spam classification (detection)

Evaluation: Binary Classification

	System 1	System 2
Precision	1 /3 = 0.33	0/1 = 0
Recall	1 /2 = 0.5	0/2 = 0
F1	0.4	0

Evaluation: Multi-class

- Accuracy = (3+3+1)/10 = 0.7
- Good measure when
 - Classes are nearly balanced
- Preferred:
 - Precision/recall/F1 for each class

Р	0.75	1	0.333
R	0.75	0.75	0.5
F1	0.75	0.86	0.4

$$= (0.75+0.86+0.4)/3$$

= 0.67

Evaluation: Multi-class

- Majority class baseline
 - Accuracy = 0.8
 - Macro-F1 = 0.296

- Macro-F1:
 - Should be used in binary classification when two classes are important
 - e.g.: males/females while distribution is 80/20%

Error Analysis

Confusion Matrix

Predicted class					
S					
l clas		3	0	1	
Actual class		0	3	1	
		1	0	1	

- Useful:
 - Find classes that are confused with others
 - Develop better features to solve the problem

Summary

- Text Classification tasks
- Feature extraction/selection/synthesis/weighting
- Learning algorithms
- Baselines
- Evaluation measures
 - Accuracy/precision/recall/Macro-F1

Resources

- Fabrizio Sebastiani
 Machine Learning in Automated Text Categorization
 ACM Computing Surveys, 2002
 Link: https://arxiv.org/pdf/cs/0110053
- Yoav Goldberg
 A Primer on Neural Network Models for Natural Language Processing
 Link: https://arxiv.org/abs/1510.00726

