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1. What is Deforestation?
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Basic Idea of Deforestation

Functional programming languages tend to allocate lots of short-lived objects.

This is due to a focus on high-level programming
and the use of composable abstractions.

4



Basic Idea of Deforestation

Functional programming languages tend to allocate lots of short-lived objects.

This is due to a focus on high-level programming
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Basic Idea of Deforestation

Functional programming languages tend to allocate lots of short-lived objects.

This is due to a focus on high-level programming
and the use of composable abstractions.

Example: list combinators, such as map , filter , concatMap , etc.

Even when implemented lazily (as in Haskell), these require allocating
intermediate values often used only once and then immediately discarded.

Deforestation: the act of removing the unnecessary creation of trees from
functional programs without changing their semantics.
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1.1. Manual Deforestation
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Manual Deforestation Example

Consider the following Haskell program:

  map f xs = case xs of { []     -> [];
                          x : xs -> f x : map f xs }
  incr x = x + 1
  double x = x * 2

  main ls = map incr (map double ls)

Problem?

6



Manual Deforestation Example

Consider the following Haskell program:

  map f xs = case xs of { []     -> [];
                          x : xs -> f x : map f xs }
  incr x = x + 1
  double x = x * 2

  main ls = map incr (map double ls)

Problem?

The intermediate list map double ls  is immediately consumed by map incr !
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  map f xs = case xs of { []     -> [];
                          x : xs -> f x : map f xs }
  main ls = map incr (map double ls)
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Manual Deforestation Example

  map f xs = case xs of { []     -> [];
                          x : xs -> f x : map f xs }
  main ls = map incr (map double ls)

The intermediate list map double ls  is immediately consumed by map incr !

The following code is typically 40% more efficient:

  map2 f g xs = case xs of { []     -> [];
                             x : xs -> f (g x) : map2 f g xs }
  main ls = map2 incr double ls
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Manual Deforestation Example

  map f xs = case xs of { []     -> [];
                          x : xs -> f x : map f xs }
  main ls = map incr (map double ls)

The intermediate list map double ls  is immediately consumed by map incr !

The following code is typically 40% more efficient:

  map2 f g xs = case xs of { []     -> [];
                             x : xs -> f (g x) : map2 f g xs }
  main ls = map2 incr double ls

No more intermediate list created!

7



Manual Deforestation

It is possible to rewrite your programs
to avoid the creation of intermediate data structures manually.
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Manual Deforestation

It is possible to rewrite your programs
to avoid the creation of intermediate data structures manually.

This requires heavy refactoring, duplication, and breaks modular abstractions,
as it requires exposing and rewriting implementations.
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Manual Deforestation

It is possible to rewrite your programs
to avoid the creation of intermediate data structures manually.

This requires heavy refactoring, duplication, and breaks modular abstractions,
as it requires exposing and rewriting implementations.

⟹ BAD!
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1.2. The Pie in The Sky: Automatic Deforestation
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Automatic Deforestation

This lecture is a high-level introduction on various approaches to deforestation that
have been proposed over the years.
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2. The Original Deforestation Proposal
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The Original Deforestation Idea

Not the first, but the one that coined the name, and one of the simplest

Proposed by Philip Wadler in 1990, then at University of Glasgow (Wadler 1990).
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The Original Deforestation Idea

Not the first, but the one that coined the name, and one of the simplest

Proposed by Philip Wadler in 1990, then at University of Glasgow (Wadler 1990).

High-level ideas:
• restrict the input language to simplify the problem
• unroll recursive definitions and tie the knot to avoid infinite loops
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The Original Deforestation Idea
The Language: 𝑡 stands for term; 𝑝 stands for pattern

• 𝑐 the name of the constructor, can be arbitrary
• patterns 𝑝 are not nested for simplicity
• 𝑎𝑖 denotes 𝑎1…𝑎𝑛
• 𝑡{𝑣 → 𝑡′} denotes replacing all occurences of variable 𝑣 inside 𝑡 with 𝑡′
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The Original Deforestation Idea

Key Idea: simulating the evaluation of the program to bring together the
production of data structures to their corresponding consumption sites (𝗰𝗮𝘀𝗲
terms), then the elimination of intermediate data structures is trivial.

case (Cons 1 Nil) of Nil: branch1 | Cons h t: branch2

can be easily transformed into branch2
with h  replaced by 1  and t  replaced by Nil
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The Original Deforestation Idea

The core transformation algorithm 𝑇  simulates the evaluation of programs

1. 𝑇⟦𝑣⟧ = 𝑣

2. 𝑇⟦𝑐 𝑡𝑖⟧ = 𝑐 𝑇 ⟦𝑡𝑖⟧

3. 𝑇⟦𝑓 𝑡𝑖⟧ = 𝑇⟦𝑡 {𝑣𝑖 → 𝑡𝑖}⟧, where 𝑓  is defined as 𝑓 𝑣𝑖 = 𝑡

4. 𝑇⟦𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 : 𝑡𝑖⟧ = 𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 : 𝑇 ⟦𝑡𝑖⟧

5. 𝑇⟦𝗰𝗮𝘀𝗲 𝑐𝑛 𝑡𝑗 𝗼𝗳 𝑝𝑖 : 𝑡𝑖⟧ = 𝑇⟦𝑡𝑛{𝑣𝑗 → 𝑡𝑗}⟧ if 𝑝𝑛 ≡ 𝑐𝑛 𝑣𝑗

6. 𝑇⟦𝗰𝗮𝘀𝗲 𝑓 𝑡𝑗 𝗼𝗳 𝑝𝑖 : 𝑡𝑖⟧ = 𝑇⟦𝗰𝗮𝘀𝗲 (𝑡 {𝑣𝑗 → 𝑡𝑗}) 𝗼𝗳 𝑝𝑖 : 𝑡𝑖⟧ , where 𝑓  is
defined as 𝑓 𝑣𝑗 = 𝑡
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The Original Deforestation Idea
7. 𝑇⟦𝗰𝗮𝘀𝗲 (𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝑡𝑖) 𝗼𝗳 𝑝′

𝑗 : 𝑡′𝑗⟧ =

𝑇⟦𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝗰𝗮𝘀𝗲 𝑡𝑖 𝗼𝗳 𝑝′
𝑗 : 𝑡′𝑗⟧

16



The Original Deforestation Idea
7. 𝑇⟦𝗰𝗮𝘀𝗲 (𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝑡𝑖) 𝗼𝗳 𝑝′

𝑗 : 𝑡′𝑗⟧ =

𝑇⟦𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝗰𝗮𝘀𝗲 𝑡𝑖 𝗼𝗳 𝑝′
𝑗 : 𝑡′𝑗⟧

Example:

𝗰𝗮𝘀𝗲 (𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 None : Just 1 | Just 𝑎 : None) 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎

is transformed in one step to:
𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 None : 𝗰𝗮𝘀𝗲 Just 1 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎

Just 𝑎 : 𝗰𝗮𝘀𝗲 None 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎
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The Original Deforestation Idea
7. 𝑇⟦𝗰𝗮𝘀𝗲 (𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝑡𝑖) 𝗼𝗳 𝑝′

𝑗 : 𝑡′𝑗⟧ =

𝑇⟦𝗰𝗮𝘀𝗲 𝑡0 𝗼𝗳 𝑝𝑖 : 𝗰𝗮𝘀𝗲 𝑡𝑖 𝗼𝗳 𝑝′
𝑗 : 𝑡′𝑗⟧

Example:

𝗰𝗮𝘀𝗲 (𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 None : Just 1 | Just 𝑎 : None) 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎

is transformed in one step to:
𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 None : 𝗰𝗮𝘀𝗲 Just 1 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎

Just 𝑎 : 𝗰𝗮𝘀𝗲 None 𝗼𝗳 None : 0 | Just 𝑎 : 𝑎

into 𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 None : 1 | Just 𝑎 : 0
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The Original Deforestation Idea

The transformation algorithm is designed to proceed as much as possible,
in spite of missing the actual run-time information,
to bring together data constructor applications and 𝗰𝗮𝘀𝗲 terms.

• 3 and 6: unfold function definitions
• 5: eliminate intermediate data structure
• 7: case-of-case commuting
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Example

An more meaningful example:

flip (flip t)
where flip tr = case tr of
                  Leaf z: Leaf z
                  Branch l r: Branch (flip r) (flip l)
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Example

• flip (flip t)

• case (flip t) of ...  by 3
• case (case t of ...) ...  by 6
• case t of

  Branch l r: case (Branch (flip r) (flip l)) of Branch l r: ...
  Leaf z: ...  by 7

• case t of
  Branch l r: Branch (flip (flip l)) (flip (flip r))
  Leaf z: Leaf z  by 4, 5, 5

We encounter flip (flip r)  and flip (flip l)  again!

𝑇  Loops forever on unfolding flip ?
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Tying the Recursive Knot

Keep track of function call terms we have already processed, and later when
similar terms are encountered again, stop unfolding and tie the knot by
introducing new recursive function definitions.

• Similar terms: up to renaming of variables

Examples:

𝑓 𝑥

𝑓 𝑥

𝑔 𝑥

𝑔 𝑦

𝑓 (𝑔 𝑥)

𝑓 (𝑔 𝑦)

𝑓 𝑥

𝑓 (𝑔 𝑥)
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Tying the Recursive Knot

flip (flip r)  and flip (flip l)  are both renamings of the initial term
flip (flip t) , so the unfolding stops by introducing a new definition h , whose
body is the current term we get from running 𝑇  with flip (flip r)  and
flip (flip l)  replaced by h r  and h l :

h t = case t of
        Branch l r: Branch (h l) (h r)
        Leaf z: Leaf z
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Treeless Form

Our goal is to eliminate the allocation of intermediate data structures.
There is a syntactic property of programs that approximately describes our goal:
Treeless Form.

• Every argument of a function call or selector of a 𝗰𝗮𝘀𝗲 term must be a variable
— no possible intermediate data structure allocation

• Every variable must be used only once — no possible duplication of work after
unfolding
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Treeless Form

app xs ys =
 case xs of
  Nil: ys
  Cons h t:
    Cons h (app t ys)

treeless: ys  appears in
two different branches

double xs =
 app xs xs

not treeless: xs  used
twice

appapp xs ys zs =
  app xs (app ys zs)

not treeless: app ys zs
passed as an argument;
but can be transformed
to a treeless definition

23



Termination

Treeless form ensures that the algorithm 𝑇  can always terminate with a program
no less efficient than the original one.
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Termination

Treeless form ensures that the algorithm 𝑇  can always terminate with a program
no less efficient than the original one.

Deforestation Theorem. Every composition of functions with treeless
definitions can be effectively transformed to a single function with a treeless
definition, without loss of efficiency.

Pretty strong result!
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Limitations
Though the original deforestation algorithm is simple and elegant,
its applicability is limited,
explaining why it has not been used by practical compilers.
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Limitations
Though the original deforestation algorithm is simple and elegant,
its applicability is limited,
explaining why it has not been used by practical compilers.

• The treeless form is very restrictive

◦ first-order language (!)
◦ linear uses of variables
◦ no internal data structures

(later approaches lifted some restrictions but the reasoning was still limited)
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Limitations
Though the original deforestation algorithm is simple and elegant,
its applicability is limited,
explaining why it has not been used by practical compilers.

• The treeless form is very restrictive

◦ first-order language (!)
◦ linear uses of variables
◦ no internal data structures

(later approaches lifted some restrictions but the reasoning was still limited)

• Tying the knot on the fly is expensive
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3. Supercompilation
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Supercompilation

A powerful program transformation technique originally due to Turchin (1986),
which shares many similarities with Deforestation that it statically simulates the
evaluation of a program to expose its internal logic and find optimization
opportunities.

Uses:

• Prove theorems about programs
• Specialize function definitions
• Deforestation
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Supercompilation

What does a supercompiler do?

• Driving: Simulate the evaluation of programs, but with free variables
• Folding: Introduce new recursive function definitions

28



Supercompilation

• Driving propagates more information about free variables instead of simply
ignoring them like the original deforestation algorithm

•
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Supercompilation

• Driving propagates more information about free variables instead of simply
ignoring them like the original deforestation algorithm

• Folding together with Generalization ensure the termination of
Supercompilation on general programs (not limited to treeless form)
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3.1. Positive Supercompilation
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Positive Supercompilation: Driving Rules

Positive supercompilation is a simplified form of full supercompilation: it only
propagates positive information (to be explained in the next slide).

The driving rules are similar to the algorithm 𝑇⟦𝑡⟧ presented in the original
deforestation, with one core difference:

𝒟⟦𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 → 𝑡𝑖⟧ = 𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 : 𝒟⟦𝑡𝑖{𝑣 → 𝑝𝑖}⟧

31



Positive Supercompilation: Driving Rules

𝒟⟦𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 → 𝑡𝑖⟧ = 𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 : 𝒟⟦𝑡𝑖{𝑣 → 𝑝𝑖}⟧

• The original deforestation simply does 𝗰𝗮𝘀𝗲 𝑣 𝗼𝗳 𝑝𝑖 : 𝒟⟦𝑡1⟧, but a positive
supercompiler will propagate the information of the exact shape of 𝑣 in each
branch.

• “Positive” means the supercompiler will only propagate equality information
(i.e. 𝑣 ≡ 𝑝𝑖), but not inequality information.

• A more powerful supercompiler may propagate both kinds of information at a
higher cost, and using different approaches other than substitution.
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Positive Supercompilation: Driving Rules

firstPlusLast ls
where
  firstPlusLast xs = case xs of
    Nil: Nothing
    Cons h t: Some (h + fromJust (last xs))
  last xs = case xs of Nil: Nothing | Cons h t: Some (last' h t)
  last' a xs = case xs of Nil: a | Cons h t: last' h t
  fromJust m = case m of Just a: a

Having the positive information propagated helps to reduce the allocation of
Some (last' h t)  and the call to fromJust , by changing last xs  to
last (Cons h t) . More examples in paper (Sørensen, Glück, Jones 1996).
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Positive Supercompilation: Folding Strategies
For non-treeless programs, the driving processes of the following programs
never terminates without a more powerful folding strategy,

nrev xs
where
  nrev [] = []
  nrev (h:t) = app (nrev t) (h:[])
  app [] ys = ys
  app (x:xs) ys = x:(app xs ys)

nrev xs
case (nrev xs) of ...
case (case (nrev xs) of ...) of
...

arev xs []
where
  arev [] a    = []
  arev (x:xs) a = arev xs (x:a)

arev xs []
arev xs (x:[])
arev xs (x:x':[])
...

34



Positive Supercompilation: Folding Strategies

The following two techniques are used so that recursive knots can be tied during
the folding process to ensure termination.

• Homeomorphic embedding: detect similar terms

• Generalization: handle similar terms and ensure termination
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Positive Supercompilation: Folding Strategies

Homeomorphic embedding
• 𝑡1 ⊲ 𝑡2 if 𝑡1 ⊲𝑑 𝑡2 (diving) or 𝑡1 ⊲𝑐 𝑡2 (coupling)
• Diving: 𝑡1 ⊲𝑑 𝑡2 if there is a subterm 𝑡2𝑖

 of 𝑡2 such that 𝑡1 ⊲ 𝑡2𝑖

• Coupling: 𝑡1 ⊲𝑐 𝑡2 if 𝑡1 and 𝑡2 share the same top-level term constructor and all
their corresponding subterms 𝑡1𝑖

 and 𝑡2𝑖
 satisfy 𝑡1𝑖

⊲ 𝑡2𝑖

• the homeomorphic embedding relation 𝑡1 ≤ 𝑡2, if there is a renaming 𝑡𝑟 of 𝑡1
such that 𝑡𝑟 ⊲𝑐 𝑡2
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Positive Supercompilation: Folding Strategies

Homeomorphic embedding

• Some examples

𝜆𝑥.𝑥 ≤ 𝜆𝑦.𝑦 𝑓 (𝑔 𝑥) ≤ 𝑓 (𝑔 𝑦) 𝑓 (ℎ 𝑥) ≤ 𝑓 (𝑔 (ℎ 𝑦))

𝜆𝑥.𝑥 ≰ 𝜆𝑦.𝑥 𝑓 𝑧 𝑧 ≰ 𝑓 𝑥 𝑦 𝑓 (𝑔 𝑥) ≰ 𝑔 (𝑓 𝑦)
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Positive Supercompilation: Folding Strategies

Generalization of two similar terms 𝑡1, 𝑡2:

A triple (𝑡, 𝜃1, 𝜃2), where 𝑡 is a term, and 𝜃1, 𝜃2 are substitutions from variables to
terms, such that 𝑡𝜃1 = 𝑡1 and 𝑡𝜃2 = 𝑡2
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Positive Supercompilation: Folding Strategies

Generalization of two similar terms 𝑡1, 𝑡2:

A triple (𝑡, 𝜃1, 𝜃2), where 𝑡 is a term, and 𝜃1, 𝜃2 are substitutions from variables to
terms, such that 𝑡𝜃1 = 𝑡1 and 𝑡𝜃2 = 𝑡2

Some examples
• for 𝑓 𝑥 𝑦 and 𝑓 𝑧 𝑧 we have (𝑓 𝑣1 𝑣2, {𝑣1 → 𝑥, 𝑣2 → 𝑦}, {𝑣1 → 𝑧, 𝑣2 → 𝑧})
• for 𝑓 (𝑔 𝑥) and 𝑓 (𝑔 𝑦) we have (𝑓 (𝑔 𝑣), {𝑣 → 𝑥}, {𝑣 → 𝑦})
• for 𝑓 𝑥 𝑥 and 𝑓 (𝑔 𝑦) (ℎ 𝑦) we have

(𝑓 𝑣1 𝑣2, {𝑣1 → 𝑥, 𝑣2 → 𝑥}, {𝑣1 → 𝑔 𝑦, 𝑣2 → ℎ 𝑦})
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Positive Supercompilation: Folding Strategies

These folding and generalization strategies ensure termination:
the homeomorphic embedding generalizes the idea of similarity between terms
up to renaming, such that all non-terminating possiblities can be detected during
the driving process.
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Positive Supercompilation: Folding Strategies

These folding and generalization strategies ensure termination:
the homeomorphic embedding generalizes the idea of similarity between terms
up to renaming, such that all non-terminating possiblities can be detected during
the driving process.

Downside: very complicated to implement and expensive to execute;
to the best of our knowledge, no practical compiler actually does this
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3.2. Distillation
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Distillation
Process Trees: the trace of the driving process
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Distillation

The homeomorphic embedding and generalization processes are then extended
to process trees (intuitively, “unrollings” themselves),
giving a more powerful and expensive transformation algorithm.
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Distillation

The homeomorphic embedding and generalization processes are then extended
to process trees (intuitively, “unrollings” themselves),
giving a more powerful and expensive transformation algorithm.

Downside: even more complicated and expensive!
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Distillation

The homeomorphic embedding and generalization processes are then extended
to process trees (intuitively, “unrollings” themselves),
giving a more powerful and expensive transformation algorithm.

Downside: even more complicated and expensive!

We are not aware of any implementation that’s not patently broken
even on basic examples.
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4. Shortcut Deforestation
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Shortcut Deforestation

“Shortcut Deforestation”, also known as “Shortcut Fusion” or just “Fusion”
was introduced by Gill, Launchbury, Peyton Jones (1993) as a practical way of
achieving deforestation without the complexities of supercompilation.
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Shortcut Deforestation

“Shortcut Deforestation”, also known as “Shortcut Fusion” or just “Fusion”
was introduced by Gill, Launchbury, Peyton Jones (1993) as a practical way of
achieving deforestation without the complexities of supercompilation.

Key ideas:
• leave recursive definitions alone
• only focus on rewriting the use of combinators
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Shortcut Deforestation

“Shortcut Deforestation”, also known as “Shortcut Fusion” or just “Fusion”
was introduced by Gill, Launchbury, Peyton Jones (1993) as a practical way of
achieving deforestation without the complexities of supercompilation.

Key ideas:
• leave recursive definitions alone
• only focus on rewriting the use of combinators

Example: rewrite map f (map g xs)  to map (f . g) xs

Problem: huge set of rules to account for all possible pairs of functions…?
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4.1. List Fusion
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Essence of Functional Lists

Functional lists can be boiled down to two fundamental operations:
• building a new list based on some cons  and nil  constructors
• folding a list by replacing all these cons  and nil  operations by function calls
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Essence of Functional Lists

Functional lists can be boiled down to two fundamental operations:
• building a new list based on some cons  and nil  constructors
• folding a list by replacing all these cons  and nil  operations by function calls

Example of build ing a list:

  -- syntax sugar for List.cons(1, List.cons(2, List.cons(3, List.nil)))
  1 : 2 : 3 : []
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Essence of Functional Lists

Functional lists can be boiled down to two fundamental operations:
• building a new list based on some cons  and nil  constructors
• folding a list by replacing all these cons  and nil  operations by function calls

Example of build ing a list:

  -- syntax sugar for List.cons(1, List.cons(2, List.cons(3, List.nil)))
  1 : 2 : 3 : []

    == build (\ c n -> c 1 (c 2 (c 3 n)))

Definition of build :

  build g = g (:) []
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Essence of Functional Lists

Definition of fold :

  foldr k z [] = z
  foldr k z (x : xs) = k x (foldr k z xs)

Rephrasing classical list functions in terms of foldr :

  sum xs       = foldr (+) 0 xs
  elem x xs    = foldr (\ a b -> a == x || b) False xs
  map f xs     = foldr (\ a b -> f a : b) [] xs
  filter f xs  = foldr (\ a b -> if f a then a : b else b) [] xs
  xs ++ ys     = foldr (:) ys xs
  concat xs    = foldr (++) [] xs
  foldl f z xs = foldr (\ b g a -> g (f a b)) id xs z
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Digression: Typing build  and foldr
What type should foldr  have?
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Digression: Typing build  and foldr
What type should foldr  have?

  foldr :: (b -> a -> a) -> a -> [b] -> a

How about build ?

  build g = g (:) []

Tentative:

  build :: ((a -> [a] -> [a]) -> [a] -> [a]) -> [a]

Too specific… More general type?

  build :: (forall a. (b -> a -> a) -> a -> a) -> [b]

48



Crucial Equation of build  and foldr

The following equation is crucial to list fusion:

  foldr c n (build g)  ==  g c n
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Crucial Equation of build  and foldr

The following equation is crucial to list fusion:

  foldr c n (build g)  ==  g c n

Notice that g , which was originally useed to build a list in build ,
is now used to compute a result which may be something else, such as an Int !

This works thanks to the higher-ranked polymorphic type of build ,
meaning that g  is itself required to be polymorphic
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Back to the Motivating Example

Recall:

  main ls = map incr (map double ls)
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Back to the Motivating Example

Recall:

  main ls = map incr (map double ls)

Desugared into combinators:

  main ls = build (\ c1 n1 ->
    foldr (\ a1 b1 -> c1 (incr a1) b1) n1 (map double ls))

Desugared further:

  main ls = build (\ c1 n1 ->
    foldr (\ a1 b1 -> c1 (incr a1) b1) n1 (build (\ c2 n2 ->
      foldr (\ a2 b2 -> c2 (double a2) b2) n2 ls)))
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List Fusion in Practice

The Glasgow Haskell Compiler (GHC) allows registering
user-defined rewrite rules, which can be used to implement automatic list fusion
(Peyton Jones, Tolmach, Hoare 2001)

51



List Fusion in Practice

The Glasgow Haskell Compiler (GHC) allows registering
user-defined rewrite rules, which can be used to implement automatic list fusion
(Peyton Jones, Tolmach, Hoare 2001)

Note: several fundamental and practical limitations to this approach (see later)
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4.2. Other Shortcut Fusion Approaches
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Other Shortcut Fusion Approaches

Many related approaches following the same technique were proposed.

They have different tradeoffs: some programs fuse better than others

53



Other Shortcut Fusion Approaches

Many related approaches following the same technique were proposed.

They have different tradeoffs: some programs fuse better than others

For instance, Stream Fusion (Coutts, Leshchinskiy, Stewart 2007)
supports fusing zip , left folds, and nested lists

Streams are like lists but have an additional Skip  constructor
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4.3. Limitations of Shortcut Fusion
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Limitations of Staged Fusion
Fundamental limitations:

• Cannot rewrite user-defined functions

The entire program must be rewritten in terms of combinators
◦ not always practical
◦ can have performance implications (may make things slower)

• There isn’t always a best set of combinators to use
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Limitations of Staged Fusion
Fundamental limitations:

• Cannot rewrite user-defined functions

The entire program must be rewritten in terms of combinators
◦ not always practical
◦ can have performance implications (may make things slower)

• There isn’t always a best set of combinators to use

Practical limitations:

• Quite unreliable; extremely dependent on heuristic inlining

• User-defined rewrite rules not checked for correctness
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5. Staged Fusion
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High-level Idea

Staged Fusion uses multi-stage programming, a metaprogramming technique,
to guarantee that all constructed programs are completely fused.
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High-level Idea

Staged Fusion uses multi-stage programming, a metaprogramming technique,
to guarantee that all constructed programs are completely fused.

Users typically have to rewrite their programs
(the library’s interface becomes staged)
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Complete Stream Fusion
By Kiselyov, Biboudis, Palladinos, Smaragdakis (2017).
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Limitations of Staged Fusion

Only partially automated: experts need to define the staged libraries

Intrusive: users need to rewrite their programs

Inflexible: staging boundaries are fixed and can’t easily be changed
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Hybrid Approaches
Example: “Quoted staged rewriting” by Parreaux, Shaikhha, Koch (2017)
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Hybrid Approaches
Example: “Quoted staged rewriting” by Parreaux, Shaikhha, Koch (2017)
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6. The Long Way to Deforestation
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6.1. Type Inference
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Type Inference

• Type Inference: assign a type to each term (𝑡 : 𝜏 ) in the program such that
the types describe the behavior of the value represented by terms (how the
value is produced / consumed)

• Type Check: make sure that values are consumed as intended when they are
produced so that we will not end up in weird errors, such as using lists as
booleans (List ≠ Bool)

63



6.2. Subtype Inference
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Subtype Inference
In languages like Haskell, type inference propagates equalities between types:
𝜏1 = 𝜏2, which discards the direction of the flow of data.

Subtype information is more flexible because it can encode data flow information
of programs: 𝜏1 <: 𝜏2 (“𝜏1 is a subtype of 𝜏2”) means that the data of the term
with type 𝜏1 flows into another term with type 𝜏2.

fromMaybe p 0
where p = Just 1
      fromMaybe x d = case x of Just a: a | Nothing: d

The data flow from the data structure allocation Just 1  to its consuming case
expression: Just 1  → p  → x  → case x of Just ... | Nothing ...
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Subtype Inference
fromMaybe p 0
where p = Just 1
      fromMaybe x d = case x of Just a: a | Nothing: d

• subtyping information collected during subtype inference:

Just 1 <: 𝜏𝑝 𝜏𝑝 <: 𝜏𝑥 𝜏𝑥 <: {Just 𝜏𝑎 | Nothing}

after resolving the above iequalities (chaining them together), we get

Just 1 <: {Just 𝜏𝑎 | Nothing}

which naturally brings together the producer and consumer of the data
structure Just 1 , indicating an opportunity to eliminate it.
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6.3. Elaboration
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Elaboration

By efficiently resolving the subtyping inequalities collected when doing
subtyping inference using Simple-sub (Parreaux 2020) and keeping track of types
with their corresponding terms, deforestation can be done in a novel way.

fromMaybe p 0
where p = Just 1
      fromMaybe x d = case x of Just a: a | Nothing: d

can be eventually transformed to

fromMaybe' p 0
where p' = let a = 1 in a
      fromMaybe' x d = x
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Elaboration

The transformation is done through elaboration, which rewrites a term according
to the type information attached to it. Fusible producers will have types of data
constructors, with the information that they are subtypes of types of their
consumers; similarly for fusible consumers.

Rewriting is done by importing the body of consumer into the site where the
data constructor is called, binding arguments using let , and leaving the body of
new “consumer” empty.

• p = Just 1  → p' = let a = 1 in a

• fromMaybe x d = case x of Just a: a  | Nothing: d  → fromMaybe' x d = x

69



6.4. A Recursive Example
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A Recursive Example

sum (enumerate x)
where
  enumerate n = if n >= 0 then n : enumerate (n - 1) else []
  sum xs = case xs of { [] -> 0; x : xs -> x + sum xs }

• n:enumerate (n - 1)  → (enumerate x)  → xs (parameter of sum ) →
case xs of { ... }  , so this constructor call is transformed into

let x = n; xs = numerate' (n - 1) in x + sum' xs

• []  → (enumerate x)  → xs (parameter of sum ) → case xs of { ... } , so this
constructor call is transformed into 0
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A Recursive Example

sum (enumerate x)
where
  enumerate n = if n >= 0 then n : enumerate (n - 1) else []
  sum xs = case xs of { [] -> 0; x : xs -> x + sum xs }

sum' (enumerate' x)
where
  enumerate' n = if n >= 0
    then let x = n; xs = numerate' (n - 1) in x + sum' xs
    else 0
  sum' xs = xs
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Benchmark Results (51 tests in the nofib benchmark suite)
• average speedup: 14%
• leftmost: original program; rightmost: after all the steps of our transformation
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Benchmark Results (51 tests in the nofib benchmark suite)
• average code size increases by 1.8x
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