
Compiling Techniques
Lecture 2: The view from 35000 feet

High-level view of a compiler

● Must recognise legal (and illegal) programs
● Must generate correct code
● Must manage storage of all variables (and code)
● Must agree with OS & linker on format for object code
● Big step up from assembly language; use higher level notations

2

CompilerSource Code Machine Code

Errors

Traditional two-pass compiler

● Use an intermediate representation (IR)
● Front end maps legal source code into IR
● Back end maps IR into target machine code
● Admits multiple front ends & multiple passes
● Typically, front end is O(n) or O(n log n), while back end is NPC

(NP-complete)

3

FrontEndSource Code Machine Code

Errors

BackEnd
IR

A common fallacy two-pass compiler

● Can we build n x m compilers with n+m components?
● Must encode all language specific knowledge in each front end
● Must encode all features in a single IR
● Must encode all target specific knowledge in each back end
● Limited success in systems with very low-level IRs (e.g. LLVM)
● Active research area (e.g. Graal, Truffle)

4

FrontEnd

FrontEnd

FrontEnd

BackEnd

BackEnd

X86

RISC-V

Fortran

Rust

Python

The Frontend

● Recognise legal (& illegal) programs
● Report errors in a useful way
● Produce IR & preliminary storage map
● Shape the code for the back end
● Much of front end construction can be automated

5

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

The Lexer

● Lexical analysis
● Recognises words in a character stream
● Produces tokens (words) from lexeme
● Collect identifier information
● Typical tokens include number, identifier, +, –, new, while, if
● Example: x=y+2; becomes IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2)
● Lexer eliminates white space (including comments)

6

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

The Parser

● Recognises context-free syntax & reports errors
● Hand-coded parsers are fairly easy to build
● Most books advocate using automatic parser generators

7

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

Semantic Analyzer

● Guides context-sensitive (“semantic”) analysis
● Checks variable and function declared before use
● Type checking

8

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

IR Generator

● Generates the IR used by the rest of the compiler
● Sometimes the AST is the IR

9

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

Simple Expression Grammar

goal → expr

expr → expr op term | term

term → number | id

op → + | -

10

● This grammar defines simple expressions with addition & subtraction over “number” and “id”
● This grammar, like many, falls in a class called “context-free grammars”, abbreviated CFG

S = goal

T = { number, id , +, − }
N = { goal , expr , term , op }

P = { 1, 2, 3, 4, 5, 6, 7 }

Derivations

Given a CFG, we can derive sentence by repeated substitution

11

Production Result

goal

0 expr

1 expr op term

2 expr op y

3 expr - y

4 expr op term - y

5 expr op 2 - y

6 expr + 2 - y

7 term + 2 - y

8 x + 2 - y

To recognise a valid
sentence in a CFG, we

reverse this process and
build up a parse tree

Parse Tree

x + 2 - y

12

goal

expr

opexpr term

expr op term

term

id (x)

+ num(2)

- id(y)

This contains a lot of
unnecessary information.

Abstract Syntax Tree (AST)

x + 2 - y

13

-

+

id (x) num(2)

id(y)

The AST summarises grammatical
structure, without including detail

about the derivation.

● Compilers often use an abstract syntax tree
● This is much more concise
● ASTs are one kind of intermediate representation (IR)

The Backend

● Translate IR into target machine code
● Choose instructions to implement each IR operation
● Decide which value to keep in registers
● Ensure conformance with system interfaces
● Automation has been less successful in the back end

14

IR Machine
Code

Errors

Instruction
Selection

Register
Allocation

IR
Instruction
Scheduling

IR

Instruction Selection

● Produce fast, compact code
● Take advantage of target features such as addressing modes
● Usually viewed as a pattern matching problem ad hoc methods, pattern

matching, dynamic programming
● Example: madd instruction

15

IR Machine
Code

Errors

Instruction
Selection

Register
Allocation

IR
Instruction
Scheduling

IR

Register Allocation

● Have each value in a register when it is used
● Manage a limited set of resources
● Can change instruction choices & insert LOADs & STOREs
● (spilling)
● Optimal allocation is NP-Complete (1 or k registers)
● Graph colouring problem
● Compilers approximate solutions to NP-Complete problems

16

IR Machine
Code

Errors

Instruction
Selection

Register
Allocation

IR
Instruction
Scheduling

IR

Instruction Scheduling

● Produce fast, compact code
● Take advantage of target features such as addressing modes
● Usually viewed as a pattern matching problem ad hoc methods, pattern

matching, dynamic programming
● Example: madd instruction

17

IR Machine
Code

Errors

Instruction
Selection

Register
Allocation

IR
Instruction
Scheduling

IR

Three Pass Compiler

● Code Improvement (or Optimisation)
● Analyses IR and rewrites (or transforms) IR
● Primary goal is to reduce running time of the compiled code

○ May also improve space, power consumption, . . .
● Must preserve meaning of the code

○ Measured by values of named variables

18

IR Machine
Code

Errors

FrontEnd MiddleEnd

IR
BackEnd

IR

The Optimizer

● Discover & propagate some constant value
● Move a computation to a less frequently executed place
● Specialise some computation based on context
● Discover a redundant computation & remove it
● Remove useless or unreachable code
● Encode an idiom in some particularly efficient form

19

Opt 1IR IR

Errors

Opt 2

IR

Opt 3

IR

Opt N

IR IR

...

Modern Restructuring Compiler

● Translate from high-level (HL) IR to low-level (LL) IR
● Blocking for memory hierarchy and register reuse
● Vectorisation
● Parallelisation
● All based on dependence
● Also full and partial inlining
● Optimizations Not covered in this course

20

FrontEndSource

Errors

Restructurer

HL-AST
IR

Generator
Middle

End

LL-AST

BackEnd

IR IR

Role of the Runtime System

● Memory management services
○ Allocate, in the heap or in an activation record (stack frame)
○ Deallocate
○ Collect garbage

● Run-time type checking
● Error processing
● Interface to the operating system (input and output)
● Support for parallelism (communication and synchronization)

21

Programs related to compilers

● Pre-processor:
○ Produces input to the compiler
○ Processes Macro/Directives (e.g. #define, #include)

● Assembler:
○ Translate assembly language to actual machine code (binary)
○ Performs actual allocation of variables

● Linker:
○ Links together various compiled files and/or libraries
○ Generate a full program that can be loaded and executed

● Debugger:
○ Tight integration with compiler
○ Uses meta-information from compiler (e.g. variable names)

● Virtual Machines:
○ Executes virtual assembly
○ typically embedded a just-in-time (jit) compiler

22

Next Lecture

● Introduction to Lexical Analysis (real start of compiler course)
○ Decomposition of the input into a stream of tokens
○ Construction of scanners from regular expressions

23

