Compiling Techniques

Lecture 4: Automatic Lexer Generation
Starting from a collection of regular expressions (RE) we automatically generate a Lexer.

We use finite state automata (FSA) for the construction.
A Finite State Automata

A finite state automata is defined by:

- S, a finite set of states
- Σ, an alphabet, or character set used by the recogniser
- $\delta(s, c)$, a transition function (takes a state and a character and returns a new state)
- s_0, the initial or start state
- SF, a set of final states (a stream of characters is accepted if the automata ends up in a final state)
Finite State Automata for Regular Expression

Example: register names

\[
\text{register ::= } \text{`}r\text{'} (\text{`}0\text{'} | \text{`}1\text{'} | \ldots | \text{`}9\text{'}) (\text{`}0\text{'} | \text{`}1\text{'} | \ldots | \text{`}9\text{'})^*\]

The RE (Regular Expression) corresponds to a recognizer (or a finite state automata):
Table encoding and skeleton code

To be useful a recognizer must be turned into code

\[
\begin{array}{c|c|c|c|c|c}
\text{\(\delta\)} & \text{‘r’} & \text{‘0’|‘1’|…|‘9’} & \text{others} \\
\hline
\text{s0} & \text{s1} & \text{error} & \text{error} \\
\text{s1} & \text{error} & \text{s2} & \text{error} \\
\text{s2} & \text{error} & \text{s2} & \text{error} \\
\end{array}
\]

Skeleton recogniser

```python
c = next_character()
state = "s0"
while c := EOF:
    state = \(\delta(s, c)\)
    c = next_character()
if (state final):
    return success
else:
    return error
```
Non-Determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as \((a|b)^* abb\)?

- \(s_0\) has a transition on \(\varepsilon\), which can be followed without consuming an input character.
- \(s_1\) has two transitions on \(a\)
- This is a non-deterministic finite automaton (NFA)
Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with the same label leaving from the same node
- Can have ϵ transition

This means we *might have to backtrack*
Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

1. regular expression (RE) → non-deterministic finite automata (NFA)
2. NFA → deterministic finite automata (DFA)
3. DFA → generated lexer
1st step: RE → NFA (Ken Thompson, CACM, 1968)

\[
\text{\textbf{\textit{x}}} \\
\]

\[
\begin{array}{c}
\text{s0} \\
\text{s1}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \\
\text{s1}
\end{array}
\]

\[
\begin{array}{c}
\text{M} \\
\text{M}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \\
\text{s1} \\
\text{s2} \\
\text{s3} \\
\text{s4} \\
\text{s5}
\end{array}
\]

\[
\begin{array}{c}
\text{\textbf{\textit{M \mid N}}} \\
\text{\textbf{\textit{M \mid N}}}
\end{array}
\]
1st step: RE \rightarrow NFA (Ken Thompson, CACM, 1968)
Step 2: NFA \rightarrow DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states is also finite (maximum 2^n, hint: state encoded as binary vectors).
From NFA to DFA

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i.

We have two key functions:

- $\text{reachable}(s_i, \alpha)$ returns the set of states reachable from s_i by consuming character α
- $\text{closure}(s_i)$ returns the set of states reachable from s_i by ϵ (e.g. without consuming a character)
Algorithm

The Subset Construction algorithm (Fixed point iteration)

\[q_0 = \epsilon\text{-closure}(s_0); \ Q = \{q_0\}; \ \text{add} \ q_0 \ \text{to WorkList} \]
while (WorkList not empty)
remove \(q \) from WorkList
for each \(\alpha \in \Sigma \)
\[\text{subset} = \epsilon\text{-closure(reachable}(q, \alpha)) \]
\[\delta(q, \alpha) = \text{subset} \]
if \(\text{subset} \notin Q \) then
\[\text{add subset to} \ Q \ \text{and to WorkList} \]

The algorithm (in English)

- Start from start state \(s_0 \) of the NFA, compute its \(\epsilon \)-closure
- Build subset from all states reachable from \(q_0 \) for character \(\alpha \)
- Add this subset to the transition table/function \(\delta \)
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created
NFA for $a(b|c)^*$

<table>
<thead>
<tr>
<th>NFA states</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>s_0</td>
<td>q_1</td>
<td>none</td>
</tr>
<tr>
<td>q_1</td>
<td>$s_1, s_2, s_3, s_4, s_6, s_9$</td>
<td>none</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>$s_5, s_8, s_9, s_3, s_4, s_6$</td>
<td>none</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>$s_7, s_8, s_9, s_3, s_4, s_6$</td>
<td>none</td>
<td>q_2</td>
</tr>
</tbody>
</table>
DFA for a(b|c)*

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller
 (see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier
What can be so hard

Poor language design can complicate lexing

- PL/I does not have reserved words (keywords):
  ```
  if (cond) then then = else; else else = then
  ```

- In Fortran & Algol68 blanks (whitespaces) are insignificant:
  ```
  do 10 i = 1,25 = do 10 i = 1,25 (loop, 10 is statement label)
  do 10 i = 1.25 = do10i = 1.25 (assignment)
  ```

- In C, C++, Java string constants can have special characters:
 newline, tab, quote, comment delimiters, . . .
Building a Lexer

The important point:

● All this technology lets us automate lexer construction
● Implementer writes down regular expressions
● Lexer generator builds NFA, DFA and then writes out code
● This reliable process produces fast and robust lexers

For most modern language features, this works:

● As a language designer you should think twice before
● introducing a feature that defeats a DFA-based lexer
● The ones we have seen (e.g. insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting
Next Lecture

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser