
Compiling Techniques
Lecture 4: Automatic Lexer Generation

Automatic Lexer Generation

● Starting from a collection of regular expressions (RE) we automatically
generate a Lexer

● We use finite state automata (FSA) for the construction

2

ScannerSource IR

Errors

Tokenizer

char

Parser Semantic
Analyzer

token

IR
Generator

AST AST
Lexer

A Finite State Automata

A finite state automata is defined by:

● S, a finite set of states
● Σ, an alphabet, or character set used by the recogniser
● δ(s, c), a transition function (takes a state and a character and returns new

state)
● s0, the initial or start state
● SF, a set of final states (a stream of characters is accepted iif the automata

ends up in a final state)

3

Finite State Automata for Regular Expression

4

Example: register names

register ::= ‘r’ (‘0’|’1’|...|’9’) (‘0’|’1’|...|’9’)*

The RE (Regular Expression) corresponds to a recognizer (or a finite state automata):

s0 s1 s2

‘r’ ‘0’ | ‘1’|...|’9’

‘0’ | ‘1’|...|’9’

Table encoding and skeleton code

5

To be useful a recognizer must be turned into code

s0 s1 s2

‘r’ ‘0’ | ‘1’|...|’9’

‘0’ | ‘1’|...|’9’

δ ‘r’ ‘0’|’1’|...|’9’| others

s0 s1 error error

s1 error s2 error

s2 error s2 error

Skeleton recogniser

c = next_character()

state = “s0”
while c := EOF:
 state = δ(s, c)
 c = next_character()

if (state final):
 return success
else:
 return error

Non-Determinism

6

Deterministics Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might
be hard to construct directly.

What about an RE such as (a|b)∗ abb ?

s0 s1 s2

‘ε’ ‘a’

‘a’ | ‘b’

s3 s4
‘b’ ‘b’

● s0 has a transition on ε, which can be followed without
consuming an input character.

● s1 has two transitions on a
● This is a non-deterministic finite automaton (NFA)

Non-deterministic vs deterministic finite automata

7

Deterministic finite state automata (DFA):

● All edges leaving the same node have distinct labels
● There is no transition

Non-deterministic finite state automata (NFA):

● Can have multiple edges with the same label leaving from the same node
● Can have ε transition

This means we might have to backtrack

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

1. regular expression (RE) → non-deterministic finite automata (NFA)
2. NFA → deterministic finite automata (DFA)
3. DFA → generated lexer

8

1st step: RE → NFA (Ken Thompson, CACM, 1968)

9

s0 s1

‘x’

s0 s1

M

ε

‘x’

[M]

s1 s2

M

s3 s4

s5s0

ε

ε

ε

ε

M | N

N

1st step: RE → NFA (Ken Thompson, CACM, 1968)

10

s1 s2

M

s3s0

ε N

M N

s1 s2 s3s0

ε

M+

ε

ε

M

Step 2: NFA → DFA

11

Executing a non-deterministic finite automata requires backtracking, which is
inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

● We build a DFA which has one state for each set of states the NFA could end
up in.

● A set of state is final in the DFA if it contains the final state from the NFA.
● Since the number of states in the NFA is finite (n), the number of possible sets

of states is also finite (maximum 2^n , hint: state encoded as binary vectors).

From NFA to DFA

Assuming the state of the NFA are labelled si and the states of the DFA we are
building are labelled qi.

We have two key functions:

● reachable(si , α) returns the set of states reachable from si by consuming
character α

● closure(si) returns the set of states reachable from si by ε (e.g. without
consuming a character)

12

Algorithm

13

NFA for a(b|c)*

14

DFA for a(b|c)*

15

What can be so hard

Poor language design can complicate lexing

● PL/I does not have reserved words (keywords):
if (cond) then then = else; else else = then

● In Fortran & Algol68 blanks (whitespaces) are insignificant:
do 10 i = 1,25 ∼= do 10 i = 1,25 (loop, 10 is statement label)
do 10 i = 1.25 ∼= do10i = 1.25 (assignment)

● In C,C++,Java string constants can have special characters:
newline, tab, quote, comment delimiters, . . .

16

Building a Lexer

The important point:

● All this technology lets us automate lexer construction
● Implementer writes down regular expressions
● Lexer generator builds NFA, DFA and then writes out code
● This reliable process produces fast and robust lexers

For most modern language features, this works:

● As a language designer you should think twice before
● introducing a feature that defeats a DFA-based lexer
● The ones we have seen (e.g. insignificant blanks, non-reserved keywords)

have not proven particularly useful or long lasting

17

Next Lecture

● Context-Free Grammars
● Dealing with ambiguity
● Recursive descent parser

18

