Introduction to Algorithms and Data Structures

Graphs, DFS, and BFS

Graph Definitions

Graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$
Set of nodes (or vertices) \mathbf{V}, with $|\mathbf{V}|=n$
Set of edges E, with $|E|=m$
Undirected: edge $e=\{v, w\}$
Directed: \quad edge $e=(v, w)$

Graph Definitions

Neighbours of v : Set of nodes connected by an edge with v Degree of a node: number of neighbours

Directed graphs: in-degree and out-degree
Path: A sequence of (non-repeating) nodes with consecutive nodes being connected by an edge.

Length: \# nodes - 1
Distance between u and v : length of the shortest path u and v, Graph diameter: The longest distance in the graph

Lines, cycles, trees and cliques

Clique

Graph Representations

- How do we represent a graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$?
- Adjacency Matrix
- Adjacency List

Adjacency Matrix A

- The $i^{\text {th }}$ node corresponds to the $i^{\text {th }}$ row and the $i^{\text {th }}$ column.
- If there is an edge between i and j in the graph, then we have $\mathbf{A}[i, j]=1$, otherwise $\mathbf{A}[i, j=0$.
- For undirected graphs, necessarily $\mathbf{A}[i, \pi]=\mathbf{A}[j$,$] . For directed$ graphs, it could be that $\mathbf{A}[i,] \neq \mathbf{A}[j, \bar{I}$.

0	1	1	0	0
1	0	0	1	1
1	0	0	0	0
0	1	0	0	0
0	1	0	0	0

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree

Adjacency List L

- Nodes are arranged as a list, each node points to the neighbours.
- For undirected graphs, the node points only in one direction.
- For directed graphs, the node points in two directions, for in-degree and for out-degree.

Adjacency Matrix vs Adjacency List

Adjacency Matrix

Memory: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Checking adjacency of u and v Time: O(1)

Finding all adjacent nodes of u Time: O(n)

Adjacency List

Memory: O(m+n)

Checking adjacency of u and v
Time: O(min(deg(u),deg(v))

Finding all adjacent nodes of u
Time: O(deg(u))

Question: What kind of graphs are the ones for which Adjacency List is more appropriate?
Answer: Sparse graphs (i.e., graphs were $\mathrm{n} \gg \mathrm{m}$)

Searching a graph

- Consider the problem of finding a specific node of a graph.
- Imagine that nodes have numbers (but you don't know them), and you want to find the node with the number \mathbf{x}.
- Or answer that there is no such node.
- You need to search all the nodes to be sure.

An idea on a tree

Graph Traversal

- We would like to go over all the possible nodes of an (undirected) graph.
- There are different ways of doing that.
- Two systematic ways:
- Depth-First Search (DFS)
- Breadth-First Search (BFS)

DFS In words

- We wander through a labyrinth with a string and a can of red paint.
- We start at a node \mathbf{s} and we tie the end of our string to s . We paint node s as visited.
- We will let \mathbf{u} denote our current vertex. We initialise $\mathbf{u}=\mathbf{s}$
- We travel along an arbitrary edge (u,v).
- If the (\mathbf{u}, \mathbf{v}) leads to a visited vertex, we return to \mathbf{u}.
- Otherwise, we paint \mathbf{v} as visited, and we set $\mathbf{u}=\mathbf{v}$
- Then, we return to the beginning of the step.
- Once we get to a dead end (all neighbours have been visited), we backtrack to the previously visited vertex v . We set $\mathbf{u}=\mathrm{v}$ and repeat the previous steps.
- When we backtrack back to s, we terminate the process.

Depth-First Search

Visualising Depth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are back edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Definitions

- A spanning tree of a graph \mathbf{G} is a tree containing all the nodes of \mathbf{G} and the minimum number of edges

Definitions

- A connected component of a graph \mathbf{G} is subgraph such that any two vertices are connected via some path.

Component 2

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to \mathbf{v}. /*all edges that have \mathbf{v} as one of their endpoints */ if edge e is unexplored

Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge
DFS(G,u)
Else
Label e as a back edge

Depth-First Search

Depth-First Search

Implementing DFS

- We need the following properties:
- We can find all incident edges to a vertex vin O(deg(v)) time.
- Given one endpoint of an edge e, we can find the other endpoint in $O(1)$ time.
- We have a way of marking nodes or edges as "explored", and to test if a node or edge has been "explored" in O(1) time. In other words, we never examine any edge twice!

Properties of DFS

- For simplicity, assume that the graph is connected.
- DFS visits all nodes of the graph.
- Quick proof: Assume by contradiction that some node v is unvisited and let w be the first unvisited node on some path from s to v. Since w was the first unvisited node, some neighbour u of w has been visited. But then, the edge (\mathbf{u}, \mathbf{w}) was explored and \mathbf{w} was visited.
- The discovery edges form a spanning tree.
- We only mark edges as discovered when we go to unvisited nodes. We can never have a cycle of discovered edges.

Running time of DFS

- DFS is called on each node exactly once.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges \mathbf{e} incident to \mathbf{v}. /*all edges that have \mathbf{v} as one of their endpoints */ if edge e is unexplored Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge DFS(G,u)
Else
Label e as a back edge

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
- Once from each of its endpoint vertices.

Depth-First Search Pseudocode

Algorithm DFS(G,v)

for all edges e incident to \mathbf{v}. /* all edges that have \mathbf{v} as one of their endpoints */ if edge e is unexplored

Let u be the other endpoint of e
If vertex u is unexplored
Label e as a discovery edge
DFS(G,u)
Else
Label e as a back edge

Running time of DFS

- DFS is called on each node exactly once.
- Every edge is examined exactly twice.
- Once from each of its endpoint vertices.
- Therefore, DFS runs in time $\mathbf{O}(\mathrm{n}+\mathrm{m})$.

Implementing DFS

The first two properties are satisfied by the Adjacency List representation!

- We need the following properties:
- We can find all incident edges to a vertex vin O(deg(v)) time.
- Given one endpoint of an edge e, we can find the other endpoint in $O(1)$ time.
- We have a way of marking nodes or edges as "explored", and to test if a vertex of edges has been "explored" in O(1) time. In other words, we never examine any edge twice!

Using a stack

- We will need to following data structures
- An Adjacency list for the graph G.
- A stack S.
- An array Explored of size n.

Using a stack

DFS (G, s)
for every u in V set Explored[u] = false

Initialise S to be a stack containing only s
while S is not empty
pop a vertex u from S
If Explored[u] = false
Set Explored[u] = true for every edge $\{u, v\}$ incident to u push v to S

Using a stack

DFS (G, s)
while S is not empty
Pop a vertex u from S
If Explored[u] = false
Set Explored[u] = true
for every edge $\{u, v\}$ incident to u
Push v to S

Breadth-First Search

Simple idea

- Start from the starting vertex s which is at level 0 and consider it explored.
- For any node at level i, put all of its unexplored neighbours in level $i+1$ and consider them explored.
- Terminate at level j, when none of the nodes of the level has any neighbours which are unexplored.

Visualising Breadth-First Search

- Orient the edges along the direction in which they are visited during the traversal.
- Some edges are discovery edges, because they lead to unvisited vertices.
- Some edges are cross edges, because they lead to visited vertices.
- The discovery edges form a spanning tree of the connected component of the starting vertex s.

Breadth-First Search

Breadth-First Search Pseudocode

Algorithm BFS(G,s)
Initialise empty list Lo
Insert s into Lo
Label all nodes w as undiscovered
Label s as discovered
Set $i=0$
While L_{i} is not empty
Initialise empty list $\mathrm{L}_{\mathrm{i}+1}$
for each node v in Li
for all edges e incident to v
if edge \mathbf{e} is unexplored
let w be the other endpoint of \mathbf{e} if node w is undiscovered
label e as discovery edge
insert w into Li+1
label w as discovered
else
label e as cross edge
$i=i+1$

Properties of BFS

- For simplicity, assume that the graph is connected.
- The traversal visits all vertices of the graph.
- The discovery edges form a spanning tree.
- The path of the spanning tree from s to a node \mathbf{v} at level i has i edges, and this is the shortest path.
- If $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is a cross edge, then the \mathbf{u} and \mathbf{v} differ by at most one level.

Running time of BFS

- In every iteration, we consider nodes on different levels.
- Therefore nodes are not considered twice.
- Every edge is examined at most twice.
- Therefore, BFS runs in time $\mathbf{O}(\mathrm{n}+\mathrm{m})$.

DFS vs BFS

- Which one is better?
- Depends on what we use it for.

