
Introduction to Algorithms and 
Data Structures
Graphs, DFS, and BFS



Graph Definitions
Graph G=(V,E)

Set of nodes (or vertices) V, with |V| = n
Set of edges E, with |E| = m

Undirected: edge e = {v,w}
Directed: edge e = (v,w)



Graph Definitions
Neighbours of v : Set of nodes connected by an edge with v
Degree of a node: number of neighbours

Directed graphs: in-degree and out-degree
Path: A sequence of (non-repeating) nodes with consecutive nodes being 
connected by an edge.

Length: # nodes - 1
Distance between u and v : length of the shortest path u and v,
Graph diameter: The longest distance in the graph



Lines, cycles, trees and 
cliques

Line Cycle

Clique Tree



Graph Representations

• How do we represent a graph G=(V,E)?

• Adjacency Matrix

• Adjacency List



Adjacency Matrix A
• The ith node corresponds to the ith row and the ith column.

• If there is an edge between i and j in the graph, then we have 
A[i,j] = 1, otherwise A[i,j] = 0.

• For undirected graphs, necessarily A[i,j] = A[j,i]. For directed
graphs, it could be that A[i,j] ≠ A[j,i].

1 4

3

5

2

0 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0



Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for     
in-degree and for out-degree

1 4

3

5

2

1

2

3

4

5

2 3
4 5

1
2

2



Adjacency List L
• Nodes are arranged as a list, each node points to the 

neighbours.

• For undirected graphs, the node points only in one direction.

• For directed graphs, the node points in two directions, for     
in-degree and for out-degree.

1 4

3

5

2

1

2

3

4

5

2

4

1
2

2

3

1 5



Adjacency Matrix vs 
Adjacency List

Adjacency Matrix Adjacency List

Memory: O(n2) Memory: O(m+n)

Checking adjacency of u and v
Time: O(1)

Finding all adjacent nodes of u
Time: O(n) 

Checking adjacency of u and v
Time: O(min(deg(u),deg(v))

Finding all adjacent nodes of u
Time: O(deg(u)) 

Question: What kind of graphs are the ones for which Adjacency List is more appropriate? 
Answer: Sparse graphs (i.e., graphs were n >> m)



Searching a graph

• Consider the problem of finding a specific node of a 
graph.

• Imagine that nodes have numbers (but you don’t know 
them), and you want to find the node with the number x.

• Or answer that there is no such node.

• You need to search all the nodes to be sure.



An idea on a tree



Graph Traversal

• We would like to go over all the possible nodes of an 
(undirected) graph.

• There are different ways of doing that. 

• Two systematic ways:

• Depth-First Search (DFS)

• Breadth-First Search (BFS)



DFS In words
• We wander through a labyrinth with a string and a can of red paint.

• We start at a node s and we tie the end of our string to s. We paint node s as visited. 

• We will let u denote our current vertex. We initialise u = s

• We travel along an arbitrary edge (u,v). 

• If the (u,v) leads to a visited vertex, we return to u.

• Otherwise, we paint v as visited, and we set u = v

• Then, we return to the beginning of the step.

• Once we get to a dead end (all neighbours have been visited), we backtrack to the 
previously visited vertex v. We set u = v and repeat the previous steps.

• When we backtrack back to s, we terminate the process.



Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

dead end!

backtracking

J

G dead end!

backtracking

The end



Visualising Depth-First Search

• Orient the edges along the direction in which they are 
visited during the traversal. 

• Some edges are discovery edges, because they lead to 
unvisited vertices.

• Some edges are back edges, because they lead to 
visited vertices.

• The discovery edges form a spanning tree of the 
connected component of the starting vertex s.



Definitions

• A spanning tree of a graph G is a tree containing all the 
nodes of G and the minimum number of edges



Definitions

• A connected component of a graph G is subgraph such 
that any two vertices are connected via some path.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v)

for all edges e incident to v. /* all edges that have v as one of their endpoints */

if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored

Label e as a discovery edge
DFS(G,u)

Else
Label e as a back edge



Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B

Algorithm DFS(G,v)

for all edges e incident to v.  
/* all edges that have v as one of their endpoints */

if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored

Label e as a discovery edge
DFS(G,u)

Else
Label e as a back edge



Depth-First Search
A B C D

E F G H

I J K L

M N O P

A B C D

H

L

PO

K

NM

I

E F

J

G

Spanning tree

Algorithm DFS(G,v)

for all edges e incident to v.  
/* all edges that have v as one of their endpoints */

if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored

Label e as a discovery edge
DFS(G,u)

Else
Label e as a back edge



Implementing DFS
• We need the following properties:

• We can find all incident edges to a vertex v in O(deg(v))
time.

• Given one endpoint of an edge e, we can find the other 
endpoint in O(1) time.

• We have a way of marking nodes or edges as 
“explored”, and to test if a node or edge has been 
“explored” in O(1) time. In other words, we never 
examine any edge twice!



Properties of DFS
• For simplicity, assume that the graph is connected.

• DFS visits all nodes of the graph.

• Quick proof: Assume by contradiction that some node v is unvisited and 
let w be the first unvisited node on some path from s to v. Since w was 
the first unvisited node, some neighbour u of w has been visited. But 
then, the edge (u,w) was explored and w was visited.

• The discovery edges form a spanning tree.

• We only mark edges as discovered when we go to unvisited 
nodes. We can never have a cycle of discovered edges. 



Running time of DFS

• DFS is called on each node exactly once.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v)

for all edges e incident to v.  /* all edges that have v as one of their endpoints */

if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored

Label e as a discovery edge
DFS(G,u)

Else
Label e as a back edge



Running time of DFS

• DFS is called on each node exactly once.

• Every edge is examined exactly twice.

• Once from each of its endpoint vertices.



Depth-First Search 
Pseudocode

Algorithm DFS(G,v)

for all edges e incident to v.  /* all edges that have v as one of their endpoints */

if edge e is unexplored
Let u be the other endpoint of e
If vertex u is unexplored

Label e as a discovery edge
DFS(G,u)

Else
Label e as a back edge



Running time of DFS

• DFS is called on each node exactly once.

• Every edge is examined exactly twice.

• Once from each of its endpoint vertices.

• Therefore, DFS runs in time O(n+m).



Implementing DFS
• We need the following properties:

• We can find all incident edges to a vertex v in O(deg(v))
time.

• Given one endpoint of an edge e, we can find the other 
endpoint in O(1) time.

• We have a way of marking nodes or edges as 
“explored”, and to test if a vertex of edges has been 
“explored” in O(1) time. In other words, we never 
examine any edge twice!

The first two properties are satisfied by the Adjacency List representation!



Using a stack

• We will need to following data structures

• An Adjacency list for the graph G.

• A stack S.

• An array Explored of size n.



Using a stack
DFS (G, s)

for every u in V
set Explored[u] = false

Initialise S to be a stack containing only s

while S is not empty
pop a vertex u from S
If Explored[u] = false

Set Explored[u] = true
for every edge {u,v} incident to u

push v to S



Using a stack

s

s
b

a

DFS (G, s)

while S is not empty
Pop a vertex u from S
If Explored[u] = false

Set Explored[u] = true
for every edge {u,v} incident to u

Push v to S

a

b
c

d

c

d

s

b

b



Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A
level 0 level 1

B

E F

C

I

M

J

G

D

N

K

H

L

O P



Simple idea

• Start from the starting vertex s which is at level 0 and 
consider it explored.

• For any node at level i, put all of its unexplored
neighbours in level i+1 and consider them explored.

• Terminate at level j, when none of the nodes of the level 
has any neighbours which are unexplored.



Visualising Breadth-First Search

• Orient the edges along the direction in which they are 
visited during the traversal. 

• Some edges are discovery edges, because they lead to 
unvisited vertices.

• Some edges are cross edges, because they lead to 
visited vertices.

• The discovery edges form a spanning tree of the 
connected component of the starting vertex s.



Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A B

E F

C

I

M

J

G

D

N

K

H

L

O P



Breadth-First Search 
Pseudocode

Algorithm BFS(G,s)

Initialise empty list L0
Insert s into L0
Label all nodes w as undiscovered
Label s as discovered

Set i=0
While Li is not empty

Initialise empty list Li+1
for each node v in Li

for all edges e incident to v
if edge e is unexplored
let w be the other endpoint of e
if node w is undiscovered

label e as discovery edge
insert w into Li+1
label w as discovered

else
label e as cross edge

i = i+1

Each Li can be 
implemented 
by a queue

In fact, a single
queue L suffices.



Properties of BFS
• For simplicity, assume that the graph is connected.

• The traversal visits all vertices of the graph.

• The discovery edges form a spanning tree.

• The path of the spanning tree from s to a node v at level i
has i edges, and this is the shortest path.

• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.



Running time of BFS

• In every iteration, we consider nodes on different levels. 

• Therefore nodes are not considered twice.

• Every edge is examined at most twice.

• Therefore, BFS runs in time O(n+m).



DFS vs BFS

• Which one is better?

• Depends on what we use it for.


