
Advanced Algorithmic Techniques 
(COMP523)

Testing for bipartiteness



Bipartite graphs
• A graph G=(V,E) is bipartite if any only if it can be 

partitioned into sets A and B such that each edge has one 
endpoint in A and one endpoint in B.

• Often, we write G=(A U B,E).



Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be 
coloured with 2 colours (say red and green), such that 
every vertex has one red endpoint and one green 
endpoint.

• A graph G=(V,E) is bipartite if any only if it does not 
contain any cycles of odd length.



No odd cycles
• A graph G=(V,E) is bipartite if any only if it does not contain any cycles of 

odd length.

• => Assume that G is bipartite

• Suppose that G does contain an odd cycle (proof by contradiction), 
C = u1 u2 u3 … un u for some u in A (wlog), or alternatively, for some u
that is red.

• Because G is bipartite, u2 must be green, and then u3 must be red, and 
so on.

• Generally, we observe that for all k in {1,2, … ,n}, uk is red if k is odd
and green if k is even.

• By assumption, n is odd, so it must be red. But then u cannot be red, 
because G is bipartite.



Alternative definitions

• A graph G=(V,E) is bipartite if any only if its nodes can be 
coloured with 2 colours (say red and green), such that 
every vertex has one red endpoint and one green 
endpoint.

• A graph G=(V,E) is bipartite if any only if it does not 
contain any cycles of odd length.

• Sometimes, these alternatives definitions are also called 
“characterisations”.



Testing bipartiteness

• Given a graph G=(V,E), decide if it is bipartite or not.

• Given a a graph G=(V,E) decide if it is 2-colourable or not.

• Given a a graph G=(V,E) decide if it is contains cycles of 
odd length or not.



Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O P



Colouring the nodes
A B C D

E F G H

I J K L

M N O P

A B

FE

C

I

D

G

J

M N

K

H

L

O P



Colouring the nodes
• Does this remind you of something?

• It is essentially BFS!

• We label the nodes of layer 1 red, the nodes of layer 2
green, and so on.

• Implementation:

• Add a check for odd/even and assign a colour accordingly.

• In the end, check all edges to see if they have endpoints of 
the same colour.



Breadth-First Search 
Pseudocode

Algorithm BFS(G,s)

Initialise empty list L0
Initialise colour list C
Insert s into L0

Set C[s] = red

Set i=0
While Li is not empty

Initialise empty list Li+1
for each node v in Li

for all edges e incident to v
if edge e is unexplored

let w be the other endpoint of e
if node w is unexplored

label e as discovery edge
insert w into Li+1
If i+1 is odd, set C[w] = red, else set C[w] = green

else
label e as cross edge

i = i+1

For all edges e=(u,v) in G
if C[u] = C[v] return “not bipartite”

Return “bipartite”



Running time
• What did we add?

• A colour assignment for the starting node.

• An odd/even check and a colour assignment for each node in the 
loop.

• An extra loop for checking the edges of their graph for the colours of 
their endpoints.

• How much more do we “pay” (asymptotically)?

• Nothing!

• Running time O(m+n).



Correctness

• We started at an arbitrary node s. 

• Maybe we were lucky / unlucky?



Properties of BFS
• For simplicity, assume that the graph is connected.

• The traversal visits all vertices of the graph.

• The discovery edges form a spanning tree.

• The path of the spanning tree from s to a node v at level i
has i edges, and this is the shortest path.

• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.



Properties of BFS

• If e=(u,v) is a cross edge, then the u and v differ by at 
most one level.

• If e=(u,v) is a discovery edge, then the u and v differ by at 
most one level.



Correctness
• Suppose that G is bipartite. Then, all cycles must be of even 

length.

• Suppose to the contrary that the algorithm returns “not bipartite”.

• This means that it has found an edge e=(x,y) with endpoints of 
the same colour. 

• Since the endpoints of any edge can not differ by more than 
one layer and layers have alternating colours, x and y must be 
in the same layer.



Correctness
• Consider the lowest common 

ancestor z of x and y in the 
BFS tree.

• Let Li be the layer of z and let 
Lj be the layer of x and y

• Consider the cycle (z … x), 
(x,y), (y … z).

• Length: (j-i) + 1 + (j-i) (odd)

• Contradiction!

X Y

Z



Correctness
• Suppose that G is not bipartite. Then, it must contain a cycle of odd length.

• Suppose to the contrary that the algorithm returns “bipartite”.

• This means that it has not found any edge e=(x,y) with endpoints of the same 
colour. 

• This also obviously means that there is no edge with endpoints in the same 
layer.

• By the earlier discussion, all edges must have endpoints that lie in consecutive 
layers.

• Take any cycle (z, … , z). Since for every edge in this cycle there is a change of 
layer (from j to j+1 or from j+1 to j), the cycle must have even length.

• Contradiction!



Directed graphs
• Nodes are arranged as a list, each node points to the 

neighbours.

• For directed graphs, the node points in two directions, 
for in-degree and for out-degree.

1 4

3

5

2

1

2

3

4

5

2

4

1
2

2

3

1 5



DFS and BFS on directed graphs

• Very similar to their version on undirected graphs.

• When we are at a node and we examine its neighbours, a 
neighbour is now only a node that we can reach with a 
directed edge.

• The running time is still O(n+m).



Breadth-First Search
A B C D

E F G H

I J K L

M N O P

A

E F

I

B

J

C

G

K

O

L

D

P

H

M N



Directed Acyclic Graphs 
• A directed acyclic graph (DAG) G is a graph that does not 

have any cycles. 

1

2

0

3

4

1

2

0

3

4

not a DAG a DAG



Properties of DAGs

• They appear quite often in many applications.

• Example - prerequisite modules: To take module A you 
need to have taken module B and module C.

• If the module prerequisite relation has a cycle, then it is 
impossible to get a degree!



Topological Ordering
• Given a directed graph G, a topological ordering of G is 

an ordering of the nodes u1, u2, … , un, such that for every 
edge e=(ui, uj), it holds that i < j.

• Intuitively, a topological ordering orders the nodes in a 
way such that all edges point “forward”.

1 0 2 3 4

1

2

0

3

4



Topological Ordering 
implies DAG

• If graph G has a topological ordering, then G is a DAG.

• Suppose by contradiction that G has a topological ordering (u1, u2, … , 
un) but it also has a cycle C.

• Let uj be the smallest element of C according to the topological ordering.

• Let ui be its predecessor in the cycle (i.e., there is an edge e=(ui, uj)).

• ui must appear before uj in the topological order, by the presence of this 
edge. 

• This contradicts the fact that uj was the smallest element of C 
according to the topological ordering.



Does DAG imply topological 
ordering?

• TO => DAG was proved via proof-by-contradiction.

• DAG => TO will be proved via “proof-by-algorithm”.

• We will design an efficient algorithm that, given a DAG G, 
finds a topological ordering of G. 



How do we start?

• Could we have started with anything other than node 1?

• The starting node must have no incoming edges!

• Can we always find such a node?

1 0 2 3 4

1

2

0

3

4



Source node
• A source node is a node with no incoming edges.

• Lemma: Every DAG has at least one source node.

• Proof by contradiction:

• Assume that every node has at least one incoming edge.

• Start from any node u and follow edges from u backwards.

• Equivalently, we move to a neighbour of u in Grev.

• We can do that for every node, since by assumption there is no source. 

• After at least n+1 steps, we will have visited the same node twice.

• The graph has a cycle, therefore it can’t be a DAG. Contradiction!



Pictorially

…



Another simple fact

• If we remove a node u and all its incident edges from a 
DAG G, the resulting graph G’ is still a DAG.

• If G’ had a cycle, the same cycle would be present in 
G.



DAG implies topological 
ordering

• Proof-by-induction:

• Base Case: If the DAG has one or two nodes, it clearly has a topological ordering.

• Inductive step: Assume that a DAG with up to k nodes has a topological ordering 
(Inductive Hypothesis). We will prove that a DAG with k+1 nodes has a topological 
ordering.

• By our lemma, there is at least one source node in G, and let u be such a node.

• Put u first in the topological ordering (safe, since u is a source).

• Consider the graph G’, obtained by G if we remove u and its incident edges.

• G’ is a DAG (by the simple fact) with k nodes.

• It has a topological ordering by the induction hypothesis.

• Append this ordering to u.



Where is the “proof-by-
algorithm”?

• We can turn that induction proof into an algorithm.

Algorithm TopologicalSort(G)
Find a source vertex u and put it first in the order.
Let G’=G-{u}
TopologicalSort(G’)
Append this order after u



Example

u2 u3

u5u6 u4

u7 u1u1

u2 u3

u4u5u6

u7



Running time
• We need to find a source u.

• We could check each node of the graph.

• We check n nodes in the first iteration, n-1 nodes in the 
second, and so on…

• What is the running time of this?

• O(n2)

• Can we do better?



A faster algorithm
• We will be more efficient in the choice of sources.

• We will say that a node is active, if it has not been selected 
(and therefore removed) as a source by the algorithm.

• We maintain two things:

• (a) For each node w, the number of incoming edges from 
active nodes.

• (b) The set S of all active nodes that have no incoming 
edges from other active nodes.



A faster algorithm
• In the beginning, all nodes are active and we can initialise (a) and (b)

via a pass through the graph (time O(m+n))

• In each iteration:

• We select a node u from the set S.

• We delete u.

• We go through all the neighbours w of u and we reduce their value 
in (a) (i.e., number of incoming edges from active nodes) by 1.

• When the value of (a) for some node w goes to 0, w is added to the 
set S.



Reading

Kleinberg and Tardos 3.4, 3.6 (for bipartiteness and 
topological sort)

Roughgarden 8.5 (for topological sort)

CLRS 20.4 (for topological sort)

See you next year!


