
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFR08026 INFORMATICS 2: INTRODUCTION TO
ALGORITHMS AND DATA STRUCTURES

Wednesday 19 th May 2021

13:00 to 15:00

INSTRUCTIONS TO CANDIDATES

1. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

2. Calculators may be used in this exam.

Convener: D.K.Arvind
External Examiner: J.Gibbons

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

PART A

1. Consider the following sequence of commands in Python:

A = [[2,3,5],[2,3,5]]

B = [A,A]

C = B

D = C[0][1][2]

(a) Draw a schematic representation of the contents of program memory after
executing these four commands, showing the data living on the stack and the
heap and how these are related. A memory location containing a reference
to another memory location should be represented by an arrow, as in the
examples in lectures. [6 marks]

(b) What will each of the following expressions evaluate to? In cases where
the value is a reference to some heap object, indicate the relevant object
instance via a label added to your diagram (e.g. ‘B[0][0] yields a reference
to the object labelled x’).

B[0][0]

B[0][1]

B[1][0]

B[0][1][2]
[4 marks]

2. Suppose we are using a probe-based hash table to store a set of natural numbers.
Our table has size 10, and the hash-probe function is h(n, i) = (n + 3i) mod 10.
Each entry in the table is initialized to −1.

(a) Explain in steps what happens when the following sequence of operations is
performed:

insert(16), insert(36), insert(29), lookup(46)

Show the state of the table at the end of this sequences of operations. [7 marks]

(b) A programmer proposes to implement a delete operation for this hash table
as follows: to perform delete(n), simply locate the table entry containing n
if there is one, and replace the n by −1.

Give an example to illustrate the problem with this idea, starting with the
table state reached at the end of part (a). Your example should consist of
a delete operation followed by one further table operation. Explain what
happens when these operations are performed. [3 marks]

Page 1 of 9

3. (a) Suppose that f1(n) = n/4 and f2(n) =
√
n for all natural numbers n.

For which of the four pairs (i, j) (where i, j ∈ {1, 2}) is it the case that
fi ∈ O(fj)? For which pairs is it the case that fi = o(fj)? You need not
give justifications here. [4 marks]

(b) Give a rigorous justification for your answer to whether or not f2 ∈ O(f1),
appealing to the definition of O. [3 marks]

(c) Give a rigorous justification for your answer to whether or not f1 ∈ o(f1),
appealing to the definition of o. [3 marks]

4. Consider the all pairs shortest paths (APSP) problem on (directed) weighted [10 marks]
graphs, and the dynamic programming algorithm for solving APSP. Run the
dynamic programming algorithm on the directed graph below, considering the
sets of vertices Vk in increasing order, and constructing each of the matrices D<k

for k = 0, . . . , 5. Please justify your updates (or lack of updates) with a sentence
of two about each D<k.

0

2

1

3

4

1

5

4

4

−2
3

5

2

1

Page 2 of 9

5. In this question we consider QuickSort and its auxiliary method Partition:

Algorithm QuickSort(A, p, r)

1. if p < r then

2. split← Partition(A, p, r)

3. QuickSort(A, p, split− 1)

4. QuickSort(A, split + 1, r)

Algorithm Partition(A, p, r)

1. pivot← A[r].key

2. i← p− 1

3. for j ← p to r − 1 do

4. if A[j] ≤ pivot

5. i← i + 1

6. exchange A[i] and A[j]

7. exchange A[i + 1] and A[r]

8. return i + 1

The elements of A are composite, with at least a field “key”.

(a) Demonstrate the operation of QuickSort on the input array 5,−4, 2,−1,−3. [5 marks]

(b) The “best case” running-time for QuickSort is known to be Θ(n lg(n)), and
the “worst case” is Θ(n2).

Suppose that we consider the restricted case where the all values come from
the restricted set {1, 2, . . . , 10} (the input array including many duplicates,
of course). [5 marks]

Give a Θ(·) for QuickSort’s worst case running-time on these restricted input
instances, justifying your reasons.

Give a Θ(·) for QuickSort’s best case running-time on these restricted input
instances, justifying your reasons.

Page 3 of 9

PART B

1. In lectures we have mostly considered various sorting algorithms (e.g. InsertSort,
MergeSort) as applying to array representations of lists. In this question, however,
we shall consider variants of these algorithms that work on linked lists.

For our purposes, a (singly) linked list cell will be an object C with two fields:

• C.value, which will always contain an integer,

• C.next, which will contain a reference to the next cell in the list, or else the
special value nil if C is the last cell in the list.

The expression Cell(a,C) will create and return a new cell D with D.value = a

and D.next = C. Both the value and the next fields may be re-assigned after a
cell has been created. For instance, the commands

A = Cell(4,nil)

A.next = Cell(8,nil)

B = Cell(2,A)

result in a linked list B representing [2,4,8]. Note that a linked list is given simply
by a reference to its head cell, or else by nil in the case of the empty list.

(a) Give pseudocode for a function Insert(A,a) which takes a sorted linked
list A and inserts a new cell bearing the value a in the correct position. Your
function should return the updated linked list. [4 marks]

(b) Give pseudocode for a function InsertSort(A) which takes an arbitrary
linked list A and returns a sorted linked list with the same contents as A.
The linked list referenced by A should be unchanged by this operation. [5 marks]

(c) Assuming that all the basic operations on list cells take constant time, what
is the asymptotic worst-case runtime for InsertSort on linked lists of length
n? Briefly justify your answer (your explanation need not be too detailed
or formal). [4 marks]

(d) In the array-based version of InsertSort given in lectures, we go through
the elements of a source array from left to right, inserting them in turn
into a target array which we populate from left to right, shifting existing
elements rightward as necessary. Suggest a family of lists, one for each
length n, for which the performance of our linked list based InsertSort will
be asymptotically better than the array-based one. What is the asymptotic
runtime of each version of InsertSort on this family of lists? [3 marks]

Page 4 of 9

(e) We now consider how to adapt MergeSort to linked lists. This could be
done by splitting our linked list at each level into two sublists, but here
we consider an approach that avoids the need for a separate pass through
the list to perform this splitting. You may suppose you are already given
a function Merge(A,B) that takes two sorted linked lists A, B and merges
them to create a new sorted linked list, which it returns. (You need not
write pseudocode for Merge.)

Write pseudocode for a recursive function MergeSort(A,n) which takes a
linked list A and a positive integer n, known to be at most the length of A,
and returns a pair (B,C) where

• B is a sorted linked list with the same contents as the first n cells of A,

• C is the remaining portion of A (after the first n cells).

Your pseudocode should be an adaptation of the standard MergeSort algo-
rithm, treating n=1 as the base case. [8 marks]

(f) Assuming that Merge works in the expected way, what is the asymptotic
worst-case runtime for your MergeSort as a function of n? You need not
justify your answer. [1 mark]

Page 5 of 9

2. As explained in lectures, the CYK parsing algorithm processes an input of length
n in time O(n3), and in some sense detects all possible parses for the input.
However, this does not mean that it explicitly lists all possible syntax trees,
of which there might be very many. In this question we shall investigate this
phenomenon in more detail.

Consider the following grammar in Chomsky normal form. The start symbol is
NP, and the lowercase English words are terminals.

NP → NP NP
NP → A NP
NP → AP NP
AP → NP A
NP → duck | egg | blue | border

A → blue

(a) First apply the standard algorithm to construct a complete CYK chart for
the phrase

duck egg blue

Include pointers to indicate how entries in the table were obtained from other
entries. You may include multiple entries in each table cell, and should even
include multiple occurrences of the same non-terminal if there is more than
one way of obtaining it. [6 marks]

(b) Explain how you would adapt the CYK algorithm to compute the total
number of syntax trees for the given input with respect to a Chomsky normal
form grammar G. Your answer should make clear exactly what kind of
information is stored in each cell, and how this information is computed.
You need not give complete pseudocode, though you may use mathematical
formulae and/or small pseudocode fragments to make your method clear.

(You may find it helpful to develop your method in connection with the
example in (c) below.) [7 marks]

(c) Apply your method to compute the number of syntax trees for the phrase

duck egg blue border

with respect to the grammar above. You should ensure that each cell in your
chart contains all necessary information, and explain any notation conven-
tions you adopt. [6 marks]

(d) Now consider the following simple grammar (with start symbol S):

S → a | SS

Show that for n ≥ 2, the string an has at least 2n−2 syntax trees under this
grammar. Reason by induction, with n = 2 as the base case. [4 marks]

Page 6 of 9

(e) Could there be a general parsing algorithm that explicitly lists all syntax
trees for the input string, and which (for any fixed grammar) runs in poly-
nomial time with respect to the input length? Justify your answer. [2 marks]

Page 7 of 9

3. The Vertex Cover optimization problem asks for a Vertex Cover of minimum
size for the input graph G = (V,E). Recall that a subset K ⊆ V is said to be a
Vertex Cover for G if for every e ∈ E, at least one of e’s endpoints lies in K.

The decision version of Vertex Cover is NP-complete and we do not expect
to be able to solve it exactly in polynomial-time. In this question we consider a
simple Greedy algorithm.

Algorithm Greedy-VC(G = (V,E))

1. E ′ ← E

2. Initialise array K, K[v]← 0 for all v ∈ V

3. Initialise array D, D[v]← deg(v) for each v ∈ V

4. while (E ′ 6= ∅)
5. w ← argmaxv{D[v] : D[v] 6= 0}
6. K[w]← 1

7. Update E ′, D to reflect deletion of all edges adjacent to w

8. return K

Note that argmaxv{D[v]} denotes the v which achieves the max value for D[v].

(a) Assume that the graph G = (V,E), and the auxiliary “graph” E ′, are both
represented with an n× n Adjacency matrix data structure.

Give details of how we can implement Greedy-VC to to achieve a running- [10 marks]
time bound of Θ(n2) for Greedy-VC, explicitly specifying the details of how
we initialise D in line 3., how we compute w in 5., how we update D and E ′

in line 7., and how we perform the test of the while-loop.

(b) We consider specially structured bipartite graphs called Spindle graphs, and
analyse the operation of Greedy-VC on these graphs.

In what follows, note that ∪̇ is the “disjoint union” symbol.

As with all bipartite graphs, the set of nodes is separated as V = L∪̇R,
every edge having one endpoint in L and one in R. In our construction, we
will set L to have n nodes (for some n which is a power of 2). We define

R =
⋃̇n

k=2Rk, where each Rk consists of bn
k
c vertices, each of which will have

degree k. The total number of nodes in R will be greater than in L.

We define the edge set E =
⋃̇n

k=2Ek of the Spindle graph in terms of the
edges Ek adjacent to the Rk vertices. For every k = 2, . . . , n, Ek must be a
set of k · bn

k
c edges from the vertices Rk to L such that

• each v ∈ Rk has degree k

• every u ∈ L is adjacent to at most one of the Rk vertices.

Page 8 of 9

The diagram below gives an example of a Spindle graph for |L| = 8.

deg 8 deg 7 deg 6 deg 5 deg 4 deg 4 deg 3 deg 3 deg 2 deg 2 deg 2 deg 2

i. Show, for every v ∈ L, and every m, 2 ≤ m ≤ n, that the number of
adjacent vertices to v from Rm ∪ . . . ∪R2 is at most m− 1. [4 marks]

ii. Give an inductive argument to show that if we run Greedy-VC on a
Spindle graph, that the Vertex Cover computed will contain all nodes
in R. [8 marks]

iii. Briefly describe the optimal Vertex Cover for a Spindle graph. [3 marks]

Page 9 of 9

