
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFR08026 INFORMATICS 2: INTRODUCTION TO
ALGORITHMS AND DATA STRUCTURES

Wednesday 3 rd May 2023

13:00 to 15:00

INSTRUCTIONS TO CANDIDATES

1. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

2. This is a Closed Book examination.

3. CALCULATORS MAY BE USED IN THIS EXAMINATION.

Convener: D.K.Arvind

External Examiner: B.Konev

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

PART A

1. (a) Give the formal definition of the relation f = o(g), where f, g are functions
from N to the positive reals. [3 marks]

(b) Which of the following three statements are true and which are false? You
need not justify your answers.

n+ 1 = o(n+ 1000) n = o(1000n) n = o(n1000)

[3 marks]

(c) Could there be functions f, g such that both f = o(g) and g = o(f)? Rig-
orously justify your answer with reference to the formal definition of o. [4 marks]

2. Consider the following pseudocode for a variant of InsertSort. The difference
from the version in lectures is that the search for the correct insertion position j
here starts from the left of the already sorted portion. Having found the correct
j, we then shift any remaining elements of the sorted portion to the right, and
finally insert the new element at position j.

NewInsertSort(A):
for i = 1 to |A|−1

x = A[i]
j=0
while j < i and A[j] < x

j = j+1
for k = i downto j+1

A[k] = A[k−1]
A[j] = x

(a) For an arbitrary n, describe an array A of size n that results in the best
case performance of this algorithm, if performance is measured by number
of comparisons between items of A. Justify your answer, giving an exact
formula for the number of comparisons performed on this input. [3 marks]

(b) For the input array you have described in part (a), how many item com-
parisons would be performed by the standard version of InsertSort, where
the search for the insertion position proceeds from the right? Give both
an exact formula and a tight asymptotic estimate (using Θ). Justify your
answer. [4 marks]

(c) For the same input array, what is the runtime of NewInsertSort as measured
by number of line executions? An asymptotic estimate will suffice here.
Informally justify your answer. [3 marks]

Page 1 of 7

3. In this question we consider the (Max) Heap data structure and its representation
as an array.

(a) Starting with the following (Max) Heap, compute the resulting Heap (ei- [7 marks]
ther in tree or array format) after the following operations are performed in
sequence, showing the result after each operation: Heap-Extract-Max, Max-
Heap-Insert(6), Max-Heap-Insert(12), Heap-Extract-Max, Max-Heap-Insert(18):

22 19 14 5 9 8 11 2 4

0 1 2 3 4 5 6 7 8

(b) When working with an array realisation of a Heap, we can usually avoid [3 marks]
moving between tree/array indices, and just work on the array. Assuming
the array is indexed from 0, and considering the item indexed by x, give
simple formulas for the left child of x (Left(x)), the right child of x (Right(x)),
and the parent of x (Parent(x)).

Page 2 of 7

4. In this question we consider Dynamic Programming algorithms for the Knapsack
problem. We are given n items of sizes w1, . . . , wn ∈ N respectively, as well as
some capacity C ∈ N. We are in the binary knapsack setting, where we may
choose to omit item wi or alternatively add a single copy of wi to the knapsack,
for every i, 1 ≤ i ≤ n (subject to the total being below C).

We consider a collection of smaller subproblems, and formally, kp(k, C ′) is defined
as the greatest total weight ≤ C ′ that can be achieved using items w1, . . . , wk.

The following recurrence for maximum knapsack is used, together with a (n+1) ·
(C + 1) sized array kp, to achieve the DP algorithm below:

kp(k + 1, C ′) =

{
kp(k, C ′) wk+1 > C ′

max {kp(k, C ′), wk+1 + kp(k, C ′ − wk+1)} otherwise

Algorithm maxKnapsack(w1, . . . , wn, C)

1. initialise row 0 of kp to “all-0s”

2. initialise column 0 of kp to “all-0s”

3. for (i← 1 to n) do

4. for (C ′ ← 1 to C) do

5. if (wi > C ′) then x

6. kp[i, C ′]← kp[i− 1, C ′]

7. else

8. kp[i, C ′]← max{kp[i− 1, C ′], kp[i− 1, C ′ − wi] + wi}
9. return kp[n,C]

(a) Give a Θ(·) bound for the worst-case running-time of maxKnapsack in terms [4 marks]
of n and C.

(b) Suppose the input to maxKnapsack is the list w1 = 2, w2 = 3, w3 = 4 and [6 marks]
the capacity C = 6. Draw the (4 × 7)-dimensional table kp that would be
built by maxKnapsack.

Page 3 of 7

5. In this question we consider the proof of NP-completeness of the Independent
Set problem on general undirected graphs G = (V,E), which involves a reduction
from 3-Sat.

(a) The first step in demonstrating that a problem is NP-complete is to show [5 marks]
that it actually belongs to NP. For Independent Set, this means that
we must show that given a proposed independent set I ⊆ V , we can check
whether I is an independent set, and whether |I| ≥ k, in time polynomial
in the parameters n = |V |,m = |E|.
Describe an algorithm which runs in Θ(n+m) time to verify whether set I
satisfies these two conditions with respect to G. You may assume that
V = {0, ..., n− 1} and that E is stored in adjacency list format, and that I
is presented as a sequence of nodes.

(b) The second step to showing Independent Set is NP-complete is the reduc- [5 marks]
tion from 3-Sat given in our slides/lectures. Draw the “Independent set”
graph of that reduction for the Φ below, and also state the total number
of edges in the constructed graph, as well as the “k” (required size of the
Independent set) for the instance.

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4)
∧(x2 ∨ ¬x3 ∨ x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5)

Page 4 of 7

PART B

1. In this question, we consider implementations of dictionaries with a fixed set of
key-value pairs, so that insert and delete operations are not required — only
lookup. We wish to represent some finite collection I of items x, each with an
associated key x.key and value x.value, where no two items in I have the same
key. We assume our keys are linearly ordered by a relation <, so that for any
keys a and b, exactly one of a < b, a = b, b < a is true.

(a) One obvious approach is to store our items in an array A, sorted according
to their keys, then use binary search to perform lookup. Give pseudocode
for a recursive function Lookup(A, a, i, j) which returns the value (if any)
associated with key a by an item stored in the portion of A from A[i] to
A[j] inclusive. An error should be raised if the key is not present. When
comparing keys a and b, you should use the following construct.

case compare (a, b) :
Lt => ... # what happens if a < b
| Eq => ... # what happens if a = b
| Gt => ... # what happens if b < a

[8 marks]
(b) Write down an asymptotic recurrence relation for the worst-case runtime of

lookup as a function of n = j+1−i (the length of the relevant portion of A).
Use this to obtain a Θ-estimate for the worst-case runtime, showing your
reasoning. What is the asymptotic best-case runtime of your operation? [5 marks]

(c) A different approach is to use a bucket-style hash table, but one in which
the individual buckets are not linked lists but arrays of items sorted by their
key. That is, we have a hash table H of some size N , each key a will hash
to some code c = #a < N , and each H[c] will be either null or a reference to
a sorted array of items. Given this setup, write pseudocode for a function
HashLookup(H, a) which returns the value (if any) associated with key a.
Your pseudocode may call your Lookup operation from part (a). [4 marks]

(d) We now suppose that we have chosen N so that it is exceedingly unlikely
that more than 15 items in our set I will hash to the same key. (If they do,
we can try again with a different hash function, reducing the probability of
this scenario still further.) So let us now assume that all of the arrays H[c]
have length ≤ 15.

Assuming this, and assuming a constant-time hash operation, what is the
asymptotic worst-case runtime for HashLookup? More concretely, how many
hashings and how many key comparisons may a lookup involve in the worst
case? Justify your answers. [3 marks]

(e) Suppose a hashing takes 7 times as long as a key comparison, and that all
other steps take negligible time relative to these operations. How large must

Page 5 of 7

our set I be for worst-case HashLookup to be faster than worst-case Lookup,
according to your analysis? Explain your reasoning. [5 marks]

2. In this question we consider graph exploration algorithms and their application
to solving other graph problems. We will assume that we are working with a
(directed or undirected) graph G = (V,E) and that n = |V |,m = |E|.

(a) Explain the method of breadth-first search, by describing the methods bfs [5 marks]
and bfsFromVertex. Include details of the data structure used to deliver
the desired order of exploration, and the operations on this data structure
during execution of bfs.

(b) Justify the Θ(n+m) running-time of bfs, making sure to cover the Ω(n+m) [5 marks]
as well as the O(n+m).

(c) Execute bfs(a) on the graph below, drawing the breadth-first tree as well
as showing the linear order of the explored vertices. The vertices should [7 marks]
be explored in lexicographic order, and this should also be the order of
considering outgoing nodes from the current vertex v.

(d) Suppose now that G is undirected and consider the question of determining
whether the graph is bipartite - that is, whether V can be partitioned into
two subsets V = V1] V2 such that every edge e = (u, v) has one endpoint
in V1 and one endpoint in V2.

i. Give an algorithm that runs in Θ(n+m) time to solve this problem. [4 marks]

ii. Justify the correctness of your proposed algorithm. [4 marks]

[Hint: You may use the fact that a graph is bipartite if and only if it has
no odd-length cycles (without proof).]

Page 6 of 7

3. Suppose L is a context-free grammar containing no ε-rules.

(a) Briefly explain, in order, the three stages one would go through to convert
L to an equivalent grammar in Chomsky Normal Form. (Note that in the
absence of ε-rules, two of the usual five stages may be skipped.) [6 marks]

(b) Now consider the following grammar, with the four terminals a, :, (,), two
non-terminals S, X, and start symbol S.

S −→ X | X : S X −→ a | (X)

Apply your procedure to convert this to Chomsky Normal Form, explicitly
showing the grammar obtained at each of the three stages. [6 marks]

(c) Using your Chomsky Normal Form grammar, construct a CYK parse chart
for the phrase:

(a)

For each non-diagonal entry in the chart, add backtrace pointers to show
how that entry was obtained. [4 marks]

(d) Let us define the size of a production X → α to be the length of its right-
hand side α (e.g. X→ Y = Y would have size 3). We then define the size of
an entire grammar to be the sum of the sizes of all its productions.

For each of the stages s = 1, 2, 3 you described in part (a), give a Θ-estimate
for the worst-case runtime of stage s as a function of n, the size of the original
grammar L. Justify your answers. [9 marks]

Page 7 of 7

