
Module Title: Informatics 2 – Introduction to Algorithms and Data Structures
Exam Diet: April 2020
Brief notes on answers:
PART A:

1. (a) The diagram (which I cannot upload to the exam machine) has stack entries for
A pointing to ’array 1’ on the heap, for B and C both pointing to ’array 2’, and
for D containing the value 5. Both array 1 and array 2 have two elements. The
elements of array 1 contain references to distinct copies of the array [2,3,5]; those
of array 2 both contain a reference to array 1.

[Roughly 2 marks each for A and B, 1 mark each for C and D.]

(b) Address of first copy of [2,3,5]; address of second copy; address of second copy;
the integer 5. [1 mark each.]

2. (a) insert(16): Try h(16, 0) = 6 which is free, so 16 goes in cell 6.

insert(36): Try h(36, 0) = 6 which is occupied, then try h(36, 1) = 9 which is
free, so 36 goes in cell 9.

insert(29): Try h(29, 0) = 9 which is occupied, then try h(29, 1) = 2 which is
free, so 29 goes in cell 2.

lookup(46): Look in cell h(46, 0) = 6, which is occupied but not by 46. Then
look in h(46, 1) = 9 (ditto), and h(46, 2) = 2 (ditto). Finally look in h(46, 3) = 5
which is unoccupied. We conclude that 46 isn’t present in the set.

Final state of table T has T [2] = 29, T [6] = 16, T [9] = 36 and all other cells
contain −1.

[4 marks for the three insertions, 2 marks for the lookup, 1 mark for final state
of table.]

(b) For example, suppose we try delete(16), lookup(36). The deletion will locate the
cell 6 containing 16 and put −1 there. Then lookup(36) will first probe cell 6
and see −1, so will then stop probing and wrongly conclude that 36 isn’t present.

[2 mark for a correct example, 1 mark for explanation.]

3. (a) Not true that f1 = O(f2), the other three are all true. [2 marks]

(b) True that f2 = o(f1), the other three are all false. [2 marks]

(c) True that
√
n = O(n/4): e.g. taking C = 1 and N = 16, we have for all n ≥ N

that
√
n ≤ n/4 = Cn/4. [2 marks for good choice of C,N , 1 mark for the right

inequality.]

(d) False that f1 = o(f1). This would be saying

∀c > 0. ∃N. ∀n ≥ N. f1(n) < c.f1(n)

But even with c = 1, we never have f1(n) < f1(n) for any n. [1 mark for showing
an understanding of o, 1 mark for good choice of c, 1 mark for the rest.]

i



4. (worked example, 10 marks)

For the given graph, we first write down D<0, which is

D<0 =


0 5 ∞ 2 ∞
∞ 0 4 −2 5
∞ ∞ 0 ∞ ∞
1 3 ∞ 0 ∞
∞ ∞ 4 1 0

 .

Note we index the rows by 0, . . . , 4 to match the vertices.

To compute D<1 we allow ourselves to consider intermediate visits through V1, which
is {0}. The vertex 2 row will not change, as vertex 2 has no outgoing edges (and this
remains true for all iterations). Otherwise the only row which can make use of paths
through 0 is the vertex 3 row (as 3 → 0 is an arc), but using this will not improve
any distances. So D<1 is D<0.

For D<2, we consider paths which might visit 1 as an intermediate point. Rows for
vertices 3 and 0 have non-∞ values for 3→ 1, 0→ 1, so we consider updating these.

D<2 =


0 5 9 2 20
∞ 0 4 −2 5
∞ ∞ 0 ∞ ∞
1 3 7 0 8
∞ ∞ 4 1 0

 .

Next we consider routes with 2 as an intermediate point - however, 2 has no outgoing
arcs/paths, so considering 2 will not change any distances. So D<3 is D<2.

Next consider routes with 3 as an intermediate point, and this results in improve-
ments/updates.

D<4 =


0 5 9 2 10
−1 0 4 −2 5
∞ ∞ 0 ∞ ∞
1 3 7 0 8
2 4 4 1 0

 .

Next routes with 4 as an intermediate point - however, given the high values in the
final column, this does not result in any improved paths. So D<5 is D<4.

marking: 2 marks for setting-up D<0, 2 marks for computing/explaining D<1, 2
marks for computing/explaining D<2, 1 mark for explaining why D<3 is D<2, 2 marks
for computing/explaining D<4, 1 mark for explaining why D<5 is D<4.

ii



5. (worked example for 5, thinking for 5)

(a) marking: Up to 5 marks depending on details.

(b) In this second part of the question we are asked to consider the changes to the
asymptotics for “best case” and “worst case” when we can assume all keys are
from {1, 2, . . . , 10}.
For “worst case”, the answer is still Θ(n2). We can see this by studying the
case where every single item in the array is the same - in that case, Partition
will result in one subarray of length reduced by 1 (with the pivot forked-off).
Applying this iteratively gives Θ(n2).

For “best case”, the answer is also Θ(n2), considerably worse than the unre-
stricted. The reason is because if we only have 10 possible key values, then one
of those values appears at least n/10 of the time, therefore whenever Partition
is called on that subarray of identical keys, the execution will take Ω((n/10)2)
time, which is also Θ(n2).

marking: 1 mark each for the correct answers, 2 marks for explaining why the
“worst case” has this value, 1 mark for best case.

6. (a) False, true, true, false, true.

[1 mark each.]

(b) f(n) is bounded below by (n2 − n + 1) lg n, and above by (n2 − n + 1) lg(n2) =
2(n2 − n + 1) lg n. Hence clear that f(n) = Θ(n2 lg n).

[2 marks for the answer, 3 for the justification. The above would suffice: explicit
values for c, C,N not required.]

7. (a) In the first step, a new red node bearing 4 (with two trivial children) is added as
the right child of ‘3’. In the second step, the red uncle rule is applied, so ‘3’ and
‘7’ turn black and ‘5’ turns red. In the third step, the red root is turned black.

[2 marks for first step, 3 marks for second step, 2 marks for third step.]

(b) 4 times. Each application of red-uncle pushes a non-trivial black downwards in
order to cure a double-red; this may introduce another double-red at the next
level up. Since there are 4 non-trivial blacks along each path, this can happen
at most 4 times, and it’s clear that this max can be attained.

[1 mark for answer, 2 for explanation.]

8. The course of computation is:

Operation Input left Stack state
( n ) Exp

Lookup (, Exp ( n ) ( Exp ) Ops
Match ( n ) Exp ) Ops
Lookup n, Exp n ) n Ops ) Ops
Match n ) Ops ) Ops
Lookup Ops, ) ) ) Ops
Match ) Ops
Lookup Ops, $ Stack empties

[2 marks for attempting something of the right form, and 1 mark per correct line.]

iii



PART B:

1. (a) Something like the following (minor variations allowed):

MergeSort3(A,p,q):

if q-p == 1

return [A[p]]

else if q-p == 2

if A[p] <= A[p+1] then return [A[p],A[p+1]]

else return [A[p+1],A[p]]

else

r = floor((2p+q)/3), s = floor((p+2q)/3)

B = MergeSort3(A,p,r)

C = MergeSort3(A,r,s)

D = MergeSort3(A,s,q)

return Merge3(B,C,D)

[3 marks for something of broadly the right form; 2 marks for correct base cases;
2 marks for details of split.]

(b) The recurrence relation is:

T (n) =

{
Θ(1) if n ≤ 2
3T (n/3) + Θ(n) otherwise

The Master Theorem therefore applies with a = b = 3, k = 1. Since log3 3 = 1,
we are in the ‘balanced case’ and the solution is T (n) = Θ(n lg n) (as for binary
mergesort).

[3 marks for recurrence relation, 1 for solution, 2 for explanation.]

(c) For a subarray of size 9, there are 1+3+9 = 13 calls to MergeSort3. In general,
for n = 3d, there are (3n − 1)/2 calls (obtained as the geometric sum

∑d
i=0 3i).

For ordinary mergesort, the corresponding formula is (2n− 1) where n = 2d.

[2 marks for the size 9 case, 2 for the general formula, 2 for the binary analogue.]

(d) We reason informally. If we first ignore the O(1) ‘error terms’, then at each
level of the recursion, the sizes of all calls to Merge 3 sum to n, so the num-
ber of comparisons for this level is estimated by 5n/3. And there are about
log3 n recursion levels. So total number of comparisons is about (5n/3) log3 n =
(5/(3 lg 3))n lg n ' 1.05n lg n.

For the error terms, there is an O(1) contribution for each call, and by part (c)
there are Θ(n) calls. So we have an upper bound of (5/(3 lg 3))n lg n−Θ(n) for
the number of comparisons. For binary mergesort, we know from lectures, the
corresponding formula is just n lg n−Θ(n) (we know from lectures that a binary
merge of size n requires at most n− 1 comparisons).

[This part is more challenging, though I’m not expecting anything more rigorous
than the above. 3 marks for the coefficient 5/(3 lg 3); 1 mark for the error term;
2 marks for the binary version.]

2. (a) Possible solution:

iv



Insert(A,a):

if A == nil then A = Cell(a,nil)

else if a <= A.value then A = Cell(a,A)

else A.next = Insert(A.next,a)

return A

[4 marks. Any reasonable solution accepted, being lenient towards minor mis-
understandings of the intended conventions re objects and references.]

(b) Possible solution:

InsertSort(A):

B = nil

C = A

while C != nil

Insert(B,C.value)

C = C.next

return B

[5 marks, guidelines as for (a).]

(c) Insert(A,a) clearly recurses at most length(A) times, with each call contributing
O(1) time, so runtime is O(length(A)). To insert-sort A of length n, we perform
n such insertions into lists of length 0, 1, . . . , n− 1 respectively, so total runtime
is O(n2). Moreover, this upper bound is attained in the case that A was already
sorted, so worst-case runtime is Θ(n2). [1 mark for O(n2) upper bound, 2 marks
for justifying this, 1 mark for the bound being attained.]

(d) For each n, let Ln be a reverse-sorted list such as [n, n − 1, . . . , 2, 1]. For such
lists, each insertion will insert some number i into a linked list representing
[i + 1, i + 2, . . . , n], which will only take constant time. So runtime of linked-
list insert-sort on Ln takes time Θ(n). For the array-based insert-sort, however,
runtime on Ln will be Θ(n2), since to insert i at the head of [i + 1, . . . , n] will
require moving all the existing elements to the right. [1 mark for a suitable
family of lists, 1 mark for each runtime.]

(e) Possible solution:

MergeSort (A,n):

if n==1

B = Cell(A.value,nil)

return (B,A.next)

else

m = floor(n/2)

(L1,A1) = MergeSort (A,m)

(L2,A2) = MergeSort (A1,n-m)

M = merge(L1,L2)

return (M,A2)

[4 marks for some evidence of right idea, 8 marks for a perfect solution.]

(f) Θ(n lg n) [1 mark].

Comment on B1: Although ‘MergeSort for linked lists’ is easily Googleable, I think
the question is OK because the easy-to-find sources use the approach of splitting the

v



list into two halves first. In theory, the above approach ought to do better for large n,
though I haven’t yet implemented it to check. . . They may also be able to find some
help online for linked list InsertSort — but I guess adapting an existing solution to
the above framework would be at least as hard as just doing it?

vi



3. (a)

duck egg blue
duck NP NP NP, NP, AP

egg NP NP, AP
blue NP, A

(with the evident pointers added). Note the two ways of forming NP in the
top-right cell. [4 marks for the entries, 2 marks for the pointers.]

(b) The entry in cell (i, j) should in effect be a table associating with each non-
terminal X the number of syntax trees for w0 · · ·wj−1 with root X [2 marks for
making this clear]. Let’s write this number as C[i, j,X].

For j−i = 1, the count for each X will be 1 if X → wi is present in the grammar,
0 otherwise [1 mark]. Recall that a grammar is essentially a set of productions,
so there’s no danger of the same production ‘appearing twice’.

For j − i > 1, we need to set

C(i, j,X) =
∑

i<k<j

∑
(X→Y Z)∈G

C(i, k, Y )× C(k, j, Z)

[4 marks for any clear way of conveying this idea.]

(c) In the following chart, a cell entry m,n, p means that the relevant substring has
m trees with root NP, n trees with root AP, and p trees with root A.

duck egg blue border
duck (1,0,0) (1,0,0) (3,1,0) (10,0,0)

egg (1,0,0) (1,1,0) (4,0,0)
blue (1,0,1) (2,0,0)

border (1,0,0)

The ‘10’ at top right (the final answer) arises as (1×4)+(1×2)+((3×1)+(1×1)).

[2 marks if the meaning of the chart is clear. 6 marks if solution seems correct
modulo minor slips; 6 marks for a perfect solution.]

(d) Base case n = 2: the string aa clearly has a syntax tree, and 20 = 1.

Induction step n > 2: given any tree ∆ for an−1, we may form one tree for an by
first applying S → SS → aS then using ∆ on the remaining S; and another by
first applying S → SS → Sa then using ∆. So if there were m trees for an−1,
this would give 2m trees for an, clearly all distinct. (There may of course be
others.) But by the induction hypothesis, there are at least 2n−3 trees for an−1;
hence there are at least 2n−2 trees for an.

[1 mark for base case, 3 marks for induction step.]

(e) No. In the case of the grammar from (d), even just writing out the ≥ 2n−2

parses for an (never mind computing them) will take time Ω(2n), which is faster
growing than any polynomial in n. [1 mark for ‘no’, 1 mark for explanation.]

Comment on B2: This is both a Lang Proc question and in some sense a DP one.

vii



4. This question asks about the following “Greedy” approximation algorithm for Vertex
Cover:

Algorithm Greedy-VC(G = (V,E))

1. E ′ ← E

2. Initialise array K, K[v]← 0 for all v ∈ V

3. Initialise array D, D[v]← deg(v) for each v ∈ V

4. while (E ′ 6= ∅)
5. w ← argmaxv{D[v] : D[v] 6= 0}
6. K[w]← 1

7. Update E ′, D to reflect deletion of all edges adjacent to w

8. return K

(a) “new” reasoning (10 marks)

We need to implement Greedy-VC to to achieve a running-time bound of Θ(n2)
for Greedy-VC, specifying the details of how we initialise D in line 3., how we
compute w in 5., how we update D and E ′ in line 7., and how we perform the
test of the while-loop.

initialising D in line 3: We have an Adjacency Matrix representation for E. To
compute deg(v) for any v, we need to check the number of 1 values in the v-th
row of E. This takes Θ(n) time for any individual v, and Θ(n2) time for all of
the vertices. Fortunately this initialisation is only done once.

How to compute w in line 5.: We want to find the vertex of maximum residual
degree. We assume that the array D has the residual degrees (we show below
how this is updated). Therefore it suffices to do a linear pass on D to find the
largest value and its index w, achieveable in Θ(n) time.

how we update D and E ′ in line 7: We carry out a linear pass on row w of E ′,
checking each entry. For every E ′[w, v] with value 1, we subtract 1 from D[v],
and then reset E ′[w, v]← 0. We then do a linear pass on column w of E ′, setting
every entry to 0.

performing the test of the while loop: We just check to see whether there are
some non-0 entries in D (this can be combined with the computation for line 5).
Θ(n)

Note that we have shown that the test of the while-loop, and each of the actions
within that loop, are Θ(n). There can be at most n iterations of the loop, so the
whole loop concludes in Θ(n2) time, and together with the initialisations before
the loop, the Algorithm takes Θ(n2) time in total.

marking: 2 marks for the initialisation of D, 2 marks for line 5, 3 marks for
line 7, 1 mark for the while-loop, 2 marks for bringing it all together.

(b) (i). “new” reasoning (4 marks)
For every v ∈ L, and every k we have the restriction that v can only be
adjacent to one of the vertices in Rk. Therefore the maximum number of

viii



adjacent vertices to v from Rm ∪ . . .∪R2 can be at most the number of Ris
that we see in there - that is, (m− 2) + 1 = m− 1.

marking: up to 4 marks for making the right points.

(ii). “new” reasoning (8 marks)
We want to show that the vertex cover constructed is all of R. We proceed
by induction on the Ri of maximum index that still has vertices which are
active in the graph.
We will prove that at each step, we have all of L still participating in the
graph, plus all Rk for k ≤ m, with K containing all nodes from Rk, k > m.
base case: this is certainly true at the beginning for m = n, before we add
any vertices to K.
induction step: Suppose that this is true for some m, and consider what
happens next. The I.H. says that K contains Rk for every k > m. By (a)i.
above, this implies that every u ∈ L, that the current degree (after the Rk

for every k > m are eliminated) is at most m− 1.
However, every node in Rm has degree m, so we will choose one of these nodes
next. Also, the nodes in Rm only have neighbours in L, so removing adjacent
edges to v ∈ Rm cannot affect the degree of any of the other Rm. Hence the
algorithm will add each of the Rk vertices in succession before considering
other vertices. Hence K will now contain all of the Rk for k > (m− 1), and
we now have our proof of the induction step.
The process finished when m← 1, and then K contains all the nodes of R.
marking: Up to 8 marks depending on the details/quality of the argument.

(iii). For the Spindle graphs it will always be the case that there are more nodes
in R than in L. However, since these are bipartite graphs, we can just take L,
of size n, and this will form a Vertex Cover.
marking: 3 marks for the correct answer.

ix


