
Module Title: Informatics 2 – Introduction to Algorithms and Data Structures
Exam Diet: April 2022
Brief notes on answers:
PART A:

1. The required diagrams are:

In (a), 1 mark for the stack entries, 2 marks each for heap data for A,B,C.

In (b), 1 mark each for A,B,C.

2. The expected steps are:

insert(2): 2 marks.

insert(3): 4 marks. Roughly 1 for the tree insertion, 3 for the rebalancing.

delete(2): 4 marks. Roughly 3 for the tree deletion, 1 for turning the root black. The
mirror-image solution is equally acceptable here.

3. (a) After the 4 operations have been carried out, the Heap will have the following
shape:

i



20

17 15

12 16 12 9

10 11

20 17 15 12 16 12 9 10 11 -

Marking: 3 marks for the right answer (either in Heap form or array form),
and 3 marks for showing some details of the 3 intermediate steps.

(b) In the case of Heap-Extract-Max, the method takes the lowest/last item in the
Heap and copies that to the root, then calls Max-Heapify at the root. In the case
where this copied item has the lowest key value 1, the Max-Heapify will continue
making recursive calls down the Heap until it reaches another item with key 1.
It is possible (for example in a tree where all items but the last one have key 2),
that Max-Heapify might recurse for the entire height of the tree. Hence even in
this restricted-key case, we have a lower bound of Ω(lg(n)) on the running-time
of Heap-Extract-Max.

In the case of Max-Heap-Insert, the approach is to add the new item into the next
free leaf on the bottom row of the Heap (Θ(1)), and then consider “swapping-up”
until the key k′ of the parent is ≥ the key of the new item. Note that in some
cases this may happen all the way to the root of the Heap (if the new item is the
first with key 3, say), hence again we have worst-case running-time proportional
to the height of the Heap, so Ω(lg(n)).

Marking: 1 mark for the height of the Heap being Θ(lg(n)), 1 mark each for
explanations of how we could still have work proportional to height even in this
restricted case, and 1 mark for the O(lg(n)).

4. (a) (worked example, 6 marks)

Here are the initial rows of the two tables for the aligned words. Recall that in
the a array, that a 0 indicates a match in the final column of the alignment, a
1 indicates a substitution, a 2 indicates an insertion (- matched against the final
char of the prefix of “carnet”) and a 3 indicates a deletion.

a r o u n d

d =

c
a
r
n
e
t



0 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 2 3 4 5 6
3 2 1 2 3 4 5
4 3 2 2 3 3 4
5 4 3 3 3 4 4
6 5 4 4 4 4 5


, a =



− 2 2 2 2 2 2
3 1/2 1/2 1/2 1/2 1/2 1/2
3 0 1/2 1/2 1/2 1/2 1/2
3 1/3 0 2 2 2 2
3 3 3 1 1/2 0 2
3 3 3 1/3 1 1/2/3 1
3 3 3 1/3 1/3 1 1/2/3


ii



marking: 2 of the marks goes for computing the d table accurately (ignore a
slip or two), 2 marks go for the explanation of the final two rows, and 2 marks
goes for the a-table.

(b) (worked example, 4 marks)

There are 6 different alignments to achieve the edit distance of 5. To see this,
we note the bottom-right cell of a has 3 options - insert, delete, substitute.

If we follow the “delete” (3) option to the cell above, that shows a path which
moves diagonally twice (1, then 0) and left twice (2, 2) and then diagonally again
. . . so the delete leads to a unique path.

If we follow the “insert” (2) option to the cell at the left, this gives an entirely
diagonal path (1, 1, 1, 0, 0) with no turns. Another unique explanation.

If we consider what happens with a substitution (1), this moves us 1 step up the
diagonal, which again shows 3 options (1, 2, 3). Again, the delete (move up) and
the insert (move left) options lead to unique paths (so 2 extra paths from these).
The substitute (move up on diagonal) leads us to a cell showing 1/2, but when
we follow either option the path becomes unique (so 2 extra paths from these).

So we get 6 paths total.

marking: Up to 4 marks, depending on the amount of detail. I will give 2
marks for any answer stating 6, even if students don’t use the a table.

5. (a) Possible solution (minor variations acceptable):

3 marks for evidence of the right idea, 4 marks for correct details.

(b) Yes. We know from lectures that register machines are Turing complete —
they can do anything that can be done on any classical model of computation,
whi ch certainly includes primality testing. [1 mark for ‘yes’, 2 marks for the
justification.]

iii



PART B:

1. (a) (i) O and o. We have f(n) = n lg n, and lg n = o(
√
n) (standard fact). [2 marks

for answer, 2 for justification.]

(ii) O,Ω,Θ. We have f(n) =
∑n

k=1 lg k ≤ n lg n, which gives us O. Also f(n) ≥∑n
k=dn/2e lg k ≥ (n/2) lg(n/2), and e.g. lg(n/2) ≥ lg(n)/2 once n ≥ 4, so f(n) ≥

(n/4) lg n, which gives us Ω and hence Θ. [Again 2 for answer, 4 for justification.
This is harder, though they’ve seen something quite similar on a tutorial sheet.]

(b) (i) A takes at worst 7n lg n lg lg n steps, and B takes at best 105n lg n steps. So
A will beat B as long as lg lg n < 105/7 = 15. So take N1 = 2215 . This is
clearly the tightest value possible, as it’s consistent with the data that A and B
indeed take these times. (ii) A takes at best 6n lg n lg lg n steps, and B takes at
worst 120n lg n steps. So B will beat A as long as lg lg n > 120/6 = 20. So take
N2 = 2220 .

[1 mark for an idea on the right lines. 1 mark each for correct values of N1 and
N2. 3 marks in total for the justifications.]

Note: although the constants chosen here are fictitious, Algorithm B is indeed
an example of a so-called ‘galactic algorithm’.

(c) We need to show

∀c > 0. ∃N. ∀n ≥ N. n lg n < cn lg n lg lg n

But n lg n > 0 for all n > 1, so this amounts to

∀c > 0. ∃N. ∀n ≥ N. 1 < c lg lg n

So suppose given c > 0. Take any N > 221/c . Then for any n ≥ N , we have
n > 221/c , so lg lg n > 1/c, so 1 < c lg lg n as required.

[3 marks for a correct statement of what we have to prove. 3 marks for ‘given c,

take N > 221/c (may deduct 1 if they have = here). 3 marks for the remaining
details, being fairly strict.]

2. (a) The course of computation is:

Operation Input left Stack state
com opt $ Shell

Lookup com, Shell com opt $ com Args
Match com opt $ Args
Lookup opt, Args opt $ Opts Files
Lookup opt, Opts opt $ opt Opts Files
Match opt $ Opts Files
Lookup $, Opts $ Files
Lookup $, Files $ stack empties: success!

[Roughly, 2 marks for a table of the right form, then 1 mark per line.]

(b) Trying to parse ‘com com’:

Operation Input left Stack state
com com $ Shell

Lookup com, Shell com com $ com Args
Match com com $ Args
Lookup com, Args opt $ Blank table entry at (com,Args)

iv



[Roughly, 1 mark per line, and 1 mark for the nature of the failure.]

(c) This could not happen in this case. The only table entries that can introduce
terminals in the stack are those for c om Args, opt Opts, file Files, and each
of these is triggered only when the relevant terminal (com, opt, file) has just
been seen. The terminal will therefore be matched immediately after the rule in
question ha s been applied.

[1 mark for ‘no’, 1 mark for seeing why not, 2 marks for quality of explanation.
]

(d) The grammar is not ambiguous. Given any string s derivable from S, it is clear
from s what production we must apply first. If s = ε then there is nothing mor
e to do; otherwise we effectively have a shorter string s′ to derive from S and
may c ontinue in the same way.

[1 mark for ‘no’, 2 marks for explanation, not being too strict.]

However, the grammar is not LL(1). Informally, without lookahead there is no
way to tell when we have reached the middle of the string, at which point we
would wish to expand the predicted S to ε and start matching the remaining
characters against those on the stack.

[1 mark for ‘no’, 2 marks for seeing the reason.]

3. (a) (15 marks, worked example)

Φ = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧
(x1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧
(x2 ∨ x3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x̄4).

solution: We are to consider the variables in order of index, and we note first
that x1 appears as a positive literal in 3 clauses, with x̄1 also appearing in 3
clauses. Hence the conditional expectation of x1 ← 1 is identical to that of
x1 ← 0, hence we choose xi ← 0, and the resulting formula is as follows:

Φ = (x1∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4)∧
(x1∨ x̄2 ∨ x̄4)∧ (x1∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)∧
(x2 ∨ x3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x̄4).

The conditional expectation of this reduced formula (over choices for x2, x3, x4)
is then 3 + 33

4
+ 37

8
, which is 7 + 7

8
.

Next we compare x2 ← 0 against x2 ← 1. We see that in the “not satisfied yet”
clauses, x̄2 appears in 2 length-2 clauses and 1 length-3 clause, while the positive
literal x2 appears in 2 length-3 clauses.

The conditional expectation of setting x2 ← 0 is then 6 + 33
4

= 8 + 1
4
.

The conditional expectation of x2 ← 1 is less than this (as the average was 7+ 7
8
).

Hence we set x2 ← 0 and our reduced formula is:
Φ = (x1∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4)∧

(x1∨ x̄2 ∨ x̄4)∧ (x1∨ x3 ∨ x4)∧ (x̄1 ∨ x̄3 ∨ x4)∧
(x2∨ x3 ∨ x4)∧ (x̄2 ∨ x3 ∨ x̄4)∧ (x2∨ x3 ∨ x̄4).

Next we must consider x3 and we note that x3 appears as a positive literal in
all three remaining clauses. Therefore, we definitely know that the conditional
expectation with x3 ← 1 is ≥ than setting x3 ← 0.

v



Hence we set x3 ← 1, satisfying all clauses. We can set x4 to either bit value.

Hence the assignment x1 ← 0, x2 ← 0, x3 ← 1 and x4 either.

marking: 4 marks each for an accurate treatment of x1, of x2 and of x3, giving
details of the workings in each case. The final 3 marks for wrapping things up
and noting x4 may have either value.

(b) (2+8 marks, new thinking)

(i). In the case of a 4-CNF formula, each individual clause has the option to be
satisfied by any of 4 independent literals. On a uniform random assignment,
the chance that a specific clause is unsatisfied is only 1− 15

16
, with probability

15
16

of being satisfied. Given there are m clauses, the expected number of
clauses is 15

16
m.

marking: 2 marks for the right answer.

(ii). We are asked to consider the effect of setting xi ← 1 as opposed to xi ← 0,
given the counts in the question. For any clause already T/F, or any remain-
ing clause not-involving xi, the expectation is unaffected by xi’s assigned
value. We only need focus on the clauses that remain that involve xi or x̄i.
If we assign xi ← 0, then every clause containing x̄i becomes satisfied - all
k−1 + k−2 + k−3 + k−4 of them. On the other hand, the clauses containing xi
have their size reduced by 1 - so we end up with k+2 clauses of length 1
(each with probability 1

2
of being satisfied), k+3 clauses of length 2 (each

with probability 3
4

of being satisfied), and k+4 clauses of length 3 (each with
probability 7

8
of being satisfied).

Hence the overall contribution of xi ← 0 to the expectation will be k−1 +
k−2 + k−3 + k−4 + 1

2
k+2 + 3

4
k+3 + 7

8
k+4 .

On the other hand, the overall contribution of xi ← 1 to the expectation
will be k+1 + k+2 + k+3 + k+4 + 1

2
k−2 + 3

4
k−3 + 7

8
k−4 .

Then the conditional expectation for xi ← 1 is greater than or equal than
for xi ← 0 ⇔

k+1 + k+2 + k+3 + k+4 + 1
2
k−2 + 3

4
k−3 + 7

8
k−4 ≥ k−1 + k−2 + k−3 + k−4 + 1

2
k+2 + 3

4
k+3 + 7

8
k+4

k+1 + 1
2
k+2

1
4

+ k+3 + 1
8
k+4 ≥ k−1 + 1

2
k−2 + 1

4
k−3 + 1

8
k−4 ,

and this linear inequality is in the form requested.
marking: 3 marks going for the discussion of what happens after xi ← 0
(or setting to 1), with reference to the size of the clauses and the consequent
“expected” values, 2 marks for getting the overall expectation correct for
each case, 3 marks for bringing it into the correct form.

vi


