
Module Title: Inf2-IADS
Exam Diet (April): 2023
Brief notes on answers: ***Fill in***
PART A

1. JL

(a) Bookwork, from lectures:

f = o(g) iff ∀c > 0. ∃N. ∀n ≥ N. f(n) < cg(n)

[Up to 3 marks. ∀n > N and/or f(n) ≤ cg(n) also accepted.]

(b) False, false, true. [1 mark each.]

(c) No [1 mark.] Suppose f = o(g) and g = o(f), and consider c = 1. Then we obtain
N such that ∀n ≥ N. f(n) < g(n), and also N ′ such that ∀n ≥ N ′. g(n) < f(n).
Taking any n ≥ max(N,N ′) gives f(n) < g(n) < f(n), a contradiction. [Up to
3 marks for the proof.]

2. JL The pseudocode here may take some time to assimilate, but the solutions require
very little writing.

(a) Best case is with the reverse-sorted array A = [n− 1, n− 2, . . . , 0]: exactly n− 1
comparisons. There is just one comparison for each i = 1, . . . , n − 1, as the
A[j] ¡ x test yields false even when j=0. [1 mark for the example, 1 marks for
exact number of comparisons (anything else Θ(n) would get 1 mark), 1 mark for
justification.]

(b) For the usual algorithm, a reverse-sorted array gives the worst-case number of
comparisons: 1+2+· · ·+(n−1) = n(n−1)/2 = Θ(n2). For each i = 1, . . . , n−1,
the new element x is compared with the i existing elements at positions from
i− 1 down to 0. [2 marks for exact formula, 1 for Θ(n2), 1 for justification.]

(c) The number of line executions will be Θ(n2). This is because for each i we are
doing Θ(i) work: any indices < i not featuring in the first loop will feature in
the second. [1 mark for Θ(n2), 2 for justification.]

i

3. MC.

(a) worked example, 7 marks

marking: 1 mark each for showing the result of each operation, 2 marks going
for some explanations along the way.

(b) worked details, 3 marks

For Left(x), the formula is 2x + 1, for Right(x) the formula is 2x + 2. For
parent(x), the formula is bx−1

2
c.

marking: 1 mark each for the correct answer.

4. MC. This was part of a tutorial question this year. Values in (b) have
been changed.

(a) The algorithm is driven by two nested for-statements, the outer iterating n times,
the inner one iterating C times. The statements within the inner loop just carry
out Θ(1) operations (comparison, addition, subtraction) on each iteration, so
overall Θ(nC) time.

Marking: Up to 4 marks for this answer, with some justification of why.

(b) The following is the main dynamic programming table, where the cell value for
(i, j) is the value of the “max-knapsack which uses items 1 to i to achieve value
at most j”.

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2
2 0 0 2 3 3 5 5
3 0 0 2 3 4 5 6

ii

marking: Up to 6 marks depending on correctness/completeness of the table.
Will give at most 4 marks if done in ad-hoc memoized way.

5. MC. Note: a different Part (b) appeared as a Question in the 2021 resit
(not published online), the clauses are changed here

(a) fleshing-out details, 5 marks The students are asked to give a specific Θ(n+
m) algorithm and they should take care to achieve that time. First thing they
should do is read the input into memory, as adjacency list structure. They also
should read the sequence of I nodes into memory, and the sensible way to do this
is to initialise an array I of length n to 0, and then set I(i)← 1 if i is read while
scanning the input sequence. This array representation can then be exploited to
check “Independence” in a simple iteration as follows:
“for i = 0 to n− 1, check first whether I(i) = o?. If so, skip.
If I(i) = 1, then scan the adjacency list A[i] for i . . . if any u in that list has
I[j] = 1, return No.
If the loop completes (without No being returned), we return Yes.

It is clear that the work done is O(n) to read in the input set into I, and that
the for loop runs in time proportional to m = |E|. hence the running time.

marking: Up to 5 marks, depending on quality of details. They can get 3 marks
for just doing polynomial checking but not the Θ(n+m).

(b) b́f worked example, 5 marks

Here is the Independent set graph for the example formula.

The number of edges can be counted as 3×5 (for the 5 triangles, then for blocking
edges between the positive/negative literals we have 2 (x1) and 4 (x2) and 4 (x3)
and 0 (x4 always negative) and 1 (x5). This is 26 in total.

marking: up to 3 marks for the details of the diagram, 2 marks for the 26.

iii

PART B

1. JL question

(a) Anything equivalent to:

Lookup(A,a,i,j):
if j<i then raise KeyNotFound
else

k = floor((i+j)/2)
case compare (a, A[k].key):

Lt => return Lookup(A,a,i,k−1)
| Eq => return A[k].value
| Gt => return Lookup(A,a,k+1,j)

Essentially bookwork, but the three-way compare construct makes it a bit dif-
ferent from the lecture version.

[4 marks for broadly the right structure including recursive calls, 4 marks for the
details. Any correct way of handling the base case(s) is acceptable.]

(b) T (n) = Θ(1) if n = 0, otherwise T (n) = T (n/2) + Θ(1). So the Master Theorem
applies with a = 1, b = 2, k = 0. Here a = bk so the solution is T (n) =
Θ(nk lg n) = Θ(lg n). [2 marks for recurrence, 2 marks for solution.]

The best case is when the first item examined has the desired key: runtime in
such cases is Θ(1). [1 mark]

(c) Anything equivalent to:

HashLookup(H,a):
c = #(a)
if H[c] = null then raise KeyNotFound
else return Lookup(H[c],a,0,size(H[c])−1)

(d) Since 15 = 24− 1, it is clear that Lookup on an array of length ≤ 15 will require
at most 4 comparisons. Thus, HashLookup will involve 1 hashing and at most 4
comparisons: Θ(1) time overall. [1 mark for 4 comparisons, 1 mark for 1 hashing,
1 mark for Θ(1).]

(e) Suppose I has n items. Taking the time of a key comparison as our time unit, and
ignoring everything except hashings and comparisons, the worst-case time for
Lookup will be blg nc + 1, and that for HashLookup will be at most 7+4=11. So
the worst case of HashLookup will be faster if blg nc ≥ 11, i.e. if n ≥ 211 = 2048.
[2 marks for a reasonable approach, 1 mark for a plausible right answer (not
being too fussy), 2 marks for quality of explanation.]

iv

2. MC.

(a) bookwork, 5 marks

Marking: Up to 5 marks depending on good details. At least 2 marks depend
on use of the Queue data structure.

(b) bookwork/thinking (DFS (similar) was done in detail in lects), 5 marks

By examination, they should note that the top-level method consists of O(n)
initalisation work, as well as a O(n)-bounded loop where the work is done by
the collective bfsFromVertex calls.

To analyse the work done by (all the) bfsFromVertex calls, we note that we will
mark each vertex as “visited” when it is pushed onto the Queue, and that the
push only is done for “not yet visited” vertices. So “all the pushes” take O(n)
overall. The loop in bfsFromVertex will explore all adjacent nodes from v when
that vertex gets deQueued (which can only happen 1 time, as it is only Queued
once). With an Adj.List structure that is O(out(v) time ton explore all the edges
for v, and overall O(m) time.

marking: Up to 5 marks depending on quality of analysis.

(c) worked example, 7 marks

marking: Up to 7 marks depending on quality of answer (linear order is at least
2 marks)

v

(d) (problem solving, was tutorial Qn, 8 marks total)

(i). The algorithm is based on bfs and bfsFromVertex, with a minor change: we
label the starting vertex v as “blue”, and as we explore, we colour the nodes
on each level alternating between “red” and “blue” at successive levels (so
the neighbours of v will get colour “red”, and so on). As we do this, we may
notice that a neighbour w of our current explored node u has already been
generated at the same level - if this is the case, we return “failure” imme-
diately; alternatively, if we generate the entire tree without this happening,
then this component is bipartite. If all “bfsFromVertex” calls pass, then the
entire graph is bipartite.
marking: Up to 4 marks depending on correctness/level-of-detail.

(ii). Note that an undirected graph is bipartite if and only if each connected
component is bipartite. Therefore we just need to show that the method is
correct for any maximal connected component C ⊂ V of G.
In the case where we explore the entire component without ever seeing an
edge between two vertices on the same level, we have constructed the bi-
partition (red/blue), having checked all edges. In the case we find one of
these level edges during exploration, we note that taking the least common
ancestor ` = lcs(u,w) and the paths from ` to u, from ` to w, and (u,w)
shows an odd-length cycle.
marking: 1 mark for the connected components detail, up to 3 marks for
arguing correctness.

vi

3. JL question

(a) The three stages are:

1 Eliminate all rules with ≥ 3 symbols on the right-hand side as follows: given a
ruleX → x1x2 . . . xn where n ≥ 3, introduce fresh non-terminalsX2, . . . , Xn−1
and replace the rule with X → x1X2, X2 → x2X3, . . .Xn−1 → xn−1xn.

2 Eliminate unit rules X → Y where Y is non-terminal. For each such rule, and
each existing rule Y → α, add the rule X → α. Repeat until no unit rules
left.

3 For every terminal a appearing in a RHS of length 2, add a fresh non-terminal
Za with rule Za → a, and replace a by Za within such RHSs.

[Bookwork. 2 marks each. A less formal answer than the above if fine if the idea
is clear.]

(b) After stage 1:

S −→ X | XY Y −→ : S X −→ a | (Z Z −→ X)

After stage 2:

S −→ a | (Z | XY Y −→ : S X −→ a | (Z Z −→ X)

After stage 3:

S −→ a | LZ | XY Y −→ CS X −→ a | LZ Z −→ XR

L −→ (R −→) C −→:

[Roughly 2 marks each.]

(c) The CYK chart is as follows:

[1 mark for a table of the right form, 2 marks for the entries, 1 mark for the
pointers.]

(d) Stage 1: For a rule of size k ≥ 3, we add k−2 non-terminals and k−1 productions:
Θ(k) work. So this stage takes Θ(n) work overall in a bad case (which arises e.g.
when there are ≥ n/4 rules of size 3).

Stage 2: There are clearly O(n) unit rules X → Y , and for each of these, O(n)
corresponding rules Y → α. So O(n2) work altogether. Moreover, this can be
attained e.g. if there is a specific non-terminal Y with say n/3 unit rules X → Y
and n/3 rules Y → α. So Θ(n2).

vii

Stage 3: Applying just this stage to a grammar of size m is clearly Θ(m) work.
But if the grammar is the output from stage 2, we have m = Θ(n2) in the worst
case, so stage 3 will take Θ(n2) work.

[This part is a slightly unusual kind of question and may be challenging (though
Stage 1 is easy). 3 marks per stage, being quite generous — e.g. only 0.5 per
stage for noting how the worst case arises.]

viii

