
Informatics 2 – Introduction to

Algorithms and Data Structures

Lab Sheet 4: Greedy Algorithms

In this lab we will be implementing greedy algorithms that were covered in the
lectures, and testing them on certain examples.

Task 1: Implementation of Dijkstra’s Algorithm

The first task will be to implement Dijkstra’s shortest path algorithm. Before
the implementation of the algorithms, we start from the implementation of
graphs as a class.

Task 1.1: Representing Graphs

Recall that graphs can be represented as adjacency matrices or adjacency lists.
In this task we will focus on the adjacency matrix representation. We will be
dealing with directed weighted graphs, so, for a graph G = (V,E), the adjacency
matrix representation will take three different forms:

• For (undirected, unweighted) graphs, Aij = Aji = 1 if and only if there is
an edge (i, j) ∈ E in G.

• For (unweighted) directed graphs, Aij = 1 if and only if there is a directed
edge (i, j) ∈ E in G.

• For weighted directed graphs, Aij = ℓij if and only if there is a directed
edge (i, j) of length ℓij in G. We will assume that for all (i, j) ∈ E, we
have ℓij > 0 and we will use Aij = 0 to denote that (i, j) ̸= E.

Exercise 1:
Define a glass Graph which will correspond to undirected, unweighted graphs.
The class should be initialised with the number of nodes n (e.g., numNodes) and
should create an empty graph with n nodes (i.e., an adjacency matrix A with
Aij = 0 for all i, j ∈ [n]). The adjacency matrix should be the an attribute of
the class set by the initialiser. The initialiser should also set an attribute for
the set of nodes {1, 2, . . . , n}.
For the Graph define the following methods:

• A method add_edge which inputs two nodes i, j and adds an edge (i, j)
to E. The addition of the edge will be by appropriately modifying the
adjacency matrix.

1



• A method delete_edge which inputs two nodes i, j and deletes the edge
(i, j) from E. The deleting of the edge will be by appropriately modifying
the adjacency matrix.

You should also add a method for printing the graph, i.e., the adjacency matrix
that represents it. Ideally, you may redefine the __str__ method for this.

Next, define a class diGraph as a subclass of Graph. Overload the add_edge

and delete_edge methods to add and delete directed rather than undirected
edges.

Finally, define a class wdiGraph as a subclass of diGraph. Overload the add_edge
method to also input the length ℓij of an edge (i, j) to be added. The addition
of the edge will be by appropriately modifying the adjacency matrix. Addition-
ally, define a new method called edge_length which inputs te endpoints of an
edge (i, j) and returns the length ℓij of the edge.

Task 1.2: Dijkstra, O(mn) running time implementation

Now we are ready to implement Dijsktra’s algorithm. For this lab sheet, we will
be content with the “inefficient” implementation, namely the one that runs in
time O(mn). This is described in the first paragraph of “Implementation and
Running Time” in Chapter 5.4 of the KT book, page 183. The idea is that we
iterate over all nodes in v ∈ V − S and for each such node, we consider all of
its neighbours u in S. For each such pair, we compute the value ofthe distance
d(u) + ℓu,v and we keep track of the smallest, as well as the node v that results
in teh smallest distance.

Exercise 2:
Implement Dijkstra’s Algorithm following the pseudocode of the lectures (also
Page 180 of the KT book). In particular, define a function

dijkstra(graph, start_node)

which inputs a graph and a starting node s and finds for each node v ∈ V of
the graph, the minimum path distance from s. The function should return the
list of shortest path distances (e.g., spDistances).

Some useful notes:

- You will need to keep track of the nodes in S and those in V − S during
the execution of the algorithm. You may use the Python set data type
for this. A list can also be used, but the set is closer to the pseudocode
for the algorithm, as S and V − S are sets.

- It might be useful to use a helper function (e.g., findNextNode) which
finds the next node to be added to S in the execution of the algorithm.
This function will input the graph, the set S and the list of shortest path
distances and will return the next node v to be considered and its shortest
path distance d(v).

Exercise 3:
Using the class Graph and its methods developed in Task 1.1. above, create the

2



graph of Figure 5.7. in Kleinberg Tardos (may be 4.7. in some versions). For
consistency, let s, u, v, x, y, z correspond to nodes 0, 1, 2, 3, 4, 5 respectively. Re-
call that the execution of Dijkstra on this graph yielded the result [0, 1, 2, 2, 3, 4].
Run your implementation of Dijkstra’s algorithm on this graph as input and
verify that you obtain the same result.

Task 2: Greedy Algorithms for the Interval Schedul-
ing Problem

The goal of this task will be to implement three different algorithms for the
interval scheduling problem, namely

- the algorithm that chooses the compatible interval with the earliest fin-
ishing time (optimal), greedyEFT,

- the algorithm that chooses the compatible interval with the earliest start-
ing time, greedyEST,

- the algorithm that chooses the smallest compatible interval, greedySmallest,

and perform some experiements with them on random inputs.

Exercise 4:
Implement the three aformentioned algorithms in Python. Each algorithm will
be a function that inputs a set of intervals with starting and finishing times,
and outputs a set of compatible intervals. We can assume that the intervals
are given to us by means of a dictionary with keys the id of the interval and
values list of two elements, the starting times and finishing times. For example,
a possible input could be

{1: [0.3, 0.5], 2:[0.4,0.6], 3:[0.1, 0.8], 4:[0.7,0.8], 5:[0.2,0.3]}.

The ouput of the function will be of a set data type, or of a list data type,
containing the ids of the intervals (which are the same as the keys in the input
dictionary). For example, a feasible schedule for the input above could be {1, 4}.
An infeasible schedule would be {1, 2} as intervals 1 and 2 overlap.

Remark 1: You will need a way to sort dictionaries in terms of certain elements
of the lists that constitute their values. For example, for greedyEFT you will
need a way to sort by the second element in the lists, which is the finishing time.
One way to achieve this is via using

sortedIntervals=dict(sorted(intervals.items(), key=lambda e: e[1][1]))

For greedyEST this can be done similarly. For greedySmallest, you will need
to sort based on the difference between the finishing and starting times, which
is a bit more challenging.

Exercise 5:
Test the performance of these three algorithms in randomly generated instances.
For n = 5, 10, 20, 50, 100, generate n intervals with their starting and finishing
time drawn uniformly at random from [0, 1], ensuring that the finishing time is

3



after the starting time. The easiest way to achieve this is to draw two values
for each interval, and set the smallest one to the starting time and the largest
one to the finishing time. Calculate the number of intervals that are included
in the output of each algorithm. Repeat this K times (e.g., for K = 100) and
calculate the average number of intervals that each algorithm includes in the
output schedule (you may use a list to store intermediate calculations). Report
your observations on the comparisons between those different algorithms. How
close are the other two algorithms compared to greedyEFT, which is optimal?

4


