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PART A

1. (a) Which of the following statements are true and which are false? You need
not justify your answers. All functions are assumed to be from the positive
integers to the positive reals.

i. n = o(3n)

ii. n +
√
n = Θ(n)

iii. n100 = O(100n)

iv. 2n = Ω(n!)

v. n2 + O(n2) = Θ(n2) [5 marks ]

(b) Give a tight asymptotic estimate (using Θ) for the value of

f(n) =
n2∑
i=n

lg i

Mathematically justify your answer. [Hint: You do not need an exact for-
mula for this summation, but there is an easy way to give explicit lower and
upper bounds.] [5 marks ]

2. (a) Consider the following red-black tree representing the set {3, 5, 7}. (The
nodes labelled 3 and 7 are red, the rest are black.)

5

3 7

Explain in three steps what happens when the operation ‘insert(4)’ is per-
formed, including diagrams of the two intermediate tree states and the final
state. Your diagrams should include the trivial nodes. You may indicate
the colours of nodes in any way you wish. [7 marks ]

(b) Suppose we have a red-black tree in which every root-to-leaf path has 5 black
nodes (including the root and the trivial leaf node). Suppose now that we
insert one new item into this tree. What is the maximum possible number
of applications of the red-uncle rule that this might involve? Give a short
informal explanation. [3 marks ]
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3. Below is the LL(1) parse table for a simple grammar for arithmetic expressions.
The start symbol is Exp. We think of the terminal n as representing a lexical
class of numerals.

n ( ) + $

Exp Exp → n Ops Exp → ( Exp ) Ops
Ops Ops → ε Ops → + Exp Ops → ε

Show how the LL(1) parsing algorithm executes on the input string

( n )

showing at each stage the operation performed, remaining input and stack state.
Use the table format from Lecture 22. [10 marks ]

4. Consider the all pairs shortest paths (APSP) problem on (directed) weighted
graphs, and the dynamic programming algorithm for solving APSP. Run the
dynamic programming algorithm on the directed graph below, constructing each [10 marks ]
of the matrices D<1, D<2, D<3 and D<4. Please justify your updates (or lack of
updates) with a sentence of two about each of these D<k.

As a starting point, the initial matrix D<0 of directed edges is

D<0 =


0 −1 3 3
2 0 2 ∞
∞ ∞ 0 4
2 ∞ ∞ 0

 .

(we index the rows as 0, . . . , 3 to match the vertices.)
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5. In this question we consider polynomial-time reductions between NP-complete
problems, specifically reductions from 3-Sat.

We will work in relation to the example

Φ = (x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x3 ∨ ¬x4)

∧(x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5)

(a) Consider the polynomial-time reduction from 3-Sat to Independent Set [6 marks ]
given in our slides/lectures. Draw the “Independent set” graph of that
reduction for the Φ above, and also state the total number of edges in the
constructed graph, plus the “k” (required size of the Independent set) for
the instance.

(b) Describe how we could carry out a polynomial-time reduction from 3-Sat [2 marks ]
to the Vertex Cover problem instead.

(c) There is a very quick way to justify that the example formula Φ does have [2 marks ]
a satisfying assignment. What is it?

[Hint: Think about the expected number of clauses of a 3-SAT formula
satisfied by a uniform random assignment to the logical variables. ]
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PART B

1. In this question we consider a variation of mergesort which, at each level of the
recursion, splits the subarray in question into three roughly equal parts rather
than two. We assume we are already given a function Merge3(B,C,D) that takes
three already sorted arrays and merges them to produce a new sorted array, which
it returns. You need not provide code for Merge3.

(a) By adapting the MergeSort pseudocode from lectures, give pseudocode for a
recursive function MergeSort3(A,p,q) that uses 3-way mergesort to sort the
portion of the array A from A[p] to A[q−1] inclusive, returning the result in
a new array of size q−p. [7 marks ]

(b) A natural implementation of Merge3 will have worst-case runtime Θ(n),
where n is the combined size of the three arrays supplied. Using this in-
formation, write down an asymptotic recurrence relation satisfied by T (n),
defined as the worst-case time for MergeSort3 on subarrays of size n.

Use the Master Theorem to obtain an asymptotic solution to this recurrence
relation, indicating briefly how your result is obtained. [6 marks ]

(c) We now look more closely at some of the constants hidden within this asymp-
totic estimate, comparing them with those for ordinary MergeSort. We first
consider the number of recursive calls required by the two versions.

How many calls to MergeSort3 (including the top-level call) would be re-
quired to sort a subarray of size 9? Generalize this observation to give an
exact closed formula for the number of calls required for a subarray of size
n, where n is an exact power of 3. Give an analogous formula for ordinary
MergeSort, assuming n is a power of 2. You need not give proofs. [6 marks ]

(d) Next, we investigate number of comparisons between array elements. A
good implementation of Merge3 will have worst-case number of comparisons
5n/3 − O(1), where n is the combined array size. Use this information
to give an informative estimate for the worst-case number of comparisons
performed by MergeSort3 on a subarray of size n. Your estimate should
include a specific value for the coefficient on the dominant term. [Hint: how
many comparisons overall are performed at each level of the recursion, and
how many levels are there?]

Give an analogous estimate for ordinary MergeSort. Your two estimates
should make clear which algorithm is the better in this regard.

Again, you need not give proofs. Informal reasoning is acceptable. [6 marks ]
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2. In this question we consider Dynamic Programming algorithms for Knapsack
problems. We consider the scenario where we are given n items of sizes w1, . . . , wn ∈
N0 respectively, as well as some capacity C ∈ N. We are in the binary knapsack
setting, where we may choose to omit item wi or alternatively add a single copy
of wi to the knapsack, for every i, 1 ≤ i ≤ n (subject to the total being below C).

We will consider two variants of the problem - the maximum knapsack problem,
and the knapsack counting problem.

We first present the dynamic programming algorithm for the maximum knapsack,
which operates on a (n+1)·(C+1) sized array kp, and which relies on the following
recurrence:

kp(k + 1, C ′) =

{
kp(k, C ′) wk+1 > C ′

max {kp(k, C ′), wk+1 + kp(k, C ′ − wk+1)} otherwise

The base cases are specified in lines 1., 2. of maxKnapsack below.

Formally, kp(k, C ′) is the greatest total weight ≤ C ′ that can be achieved using
items w1, . . . , wk.

In the Algorithm below, we can see the use of the recurrence in lines 5-8.

Algorithm maxKnapsack(w1, . . . , wn, C)

1. initialise row 0 of kp to “all-0s”

2. initialise column 0 of kp to “all-0s”

3. for (i← 1 to n) do

4. for (C ′ ← 1 to C) do

5. if (wi > C ′) then

6. kp[i, C ′]← kp[i− 1, C ′]

7. else

8. kp[i, C ′]← max{kp[i− 1, C ′], kp[i− 1, C ′ − wi] + wi}
9. return kp[n,C]

(a) Give an Θ(·) bound for the worst-case running-time of maxKnapsack in terms
of n and C. [4 marks ]

(b) Suppose the input to maxKnapsack is the list w1 = 3, w2 = 4, w3 = 5 and
the capacity C = 7. Draw the 4 × 8-dimensional table kp that would be
built by maxKnapsack. [8 marks ]

(c) For the example of (b), suppose we now consider the knapsack counting
problem - how many subsets of weights (there are 23 options) are feasible
with respect to capacity 7 (a subset is feasible as long as the total weight is
no greater than 7). How many feasible knapsacks are there for this example?

[4 marks ]
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(d) Suppose we define feas(k, C ′) to mean the number of feasible knapsacks;
the number of subsets of {w1, . . . , wi} whose sum is ≤ C ′.

Write a recurrence for feas(k, C ′). [6 marks ]

(e) Suppose that we were interested in generating a random knapsack solution
from the pool of all feasible solutions, and that we take the approach of
generating a uniform random subset of the weights, and returning this if
it is feasible; otherwise trying again. Is this likely to be a fast method for
generating a random feasible solution? [3 marks ]
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3. This question considers a variation on breadth-first search for undirected graphs.

The Firefighter model simulates a fire which spreads through a graph from
nodes to adjacent nodes, with the exception of previously-defended nodes. We are
given an undirected graph G = (V,E), a specific root vertex f ∈ V where the fire
starts, and an ordered list of defence vertices v1, . . . , vk for some k. Recall that for
any node v of a graph, the neighbourhood of v is the set of vertices adjacent to v,
denoted Nbd(v). The firefighting process operates as follows, with an evolving
set of burnt vertices Bt, of defended vertices Dt, and a set of threatened vertices
Tt, for time steps t = 0, 1, . . .:

(a) At time t = 0, the set of burnt vertices is B0 = {f}, and the set of threatened
vertices is T0 = Nbd(f). D0 is empty.

(b) At each subsequent time step t > 0, the process first:

• Carries out the “defence” of vt, and updates Dt = Dt−1 ∪ {vt}. If vt /∈
Bt−1, it is protected, and will never catch fire.

• Every threatened node u ∈ Tt−1 \ {vt} will “catch fire”, and we update
Bt = Bt−1 ∪ (Tt−1 \ {vt}).
• The updated set of threatened nodes is now

Tt =
⋃

u∈Tt−1\{vt}

Nbd(u) \ (Bt ∪Dt).

(c) The simulation terminates after step t = k is completed.

The fire is said to have been contained by v1, . . . , vk if Tk = ∅.
Here is an example execution of the Firefighting process with defence list q, v, u:
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(a) In the example simulation for the example graph above, we saw that a [6 marks ]
defence list of length 3 (q, v, u in that order) would “contain” the fire.

Is there an alternative (shorter) list of defences which would suffice to contain
the fire on our example graph in fewer time steps? Justify your answer with
respect to the graph.

(b) The process by which the fire spreads from f through a graph G = (V,E)
can be seen as a modified version of the bfsFromVertex(G, f) process.

Give pseudocode for a modified method called fireFighter(G = (V,E), f , [13 marks ]
v1, . . . , vk) which simulates the Firefighter model with respect to the defence
strategy v1, . . . , vk, returning True if the fire has been contained after
step k, and False otherwise. You should also write a few sentences to
justify why your method remains O(n + m).

You can assume that the input graph G = (V,E), is represented by an
Adjacency list data structure, and that the defence list v1, . . . , vk is given as
an ordered list.

[Hint: It may be helpful to enqueue the vertices tagged by the time step
where they were discovered. It may also be helpful to define some new arrays
to store details of the status of the vertices.]

(c) In our description above, we simulated the model with a pre-determined [6 marks ]
strategy (list of vertices to be defended, in that order). In practice, it is
common to use a heuristic to determine the “next vertex to be defended”, in
advance of each step. A common heuristic is to defend the threatened vertex
with the “highest effective degree” (effective meaning neighbours that are
not already burned, not already defended). Give an example of a graph and
starting f where this heuristic will fail to minimise the number of steps to
contain the fire, and explain why it fails.
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