
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFR08026 INFORMATICS 2: INTRODUCTION TO
ALGORITHMS AND DATA STRUCTURES

Monday 15 th August 2022

13:00 to 15:00

INSTRUCTIONS TO CANDIDATES

1. Answer all five questions in Part A, and two out of three questions in
Part B. Each question in Part A is worth 10% of the total exam mark;
each question in Part B is worth 25%.

2. This is an Open Book examination.

Convener: D.K.Arvind
External Examiner: J.Gibbons

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY



PART A

1. (a) State which of the following claims are true and which are false, without [5 marks ]
needing to justify your answers. The functions are assumed to be defined
on the domain N+ of positive integers.

i. lg(en) = ω(n)

ii. n3 + 16n2 − 100 = Ω(n2).

iii. lg(n2 + n5) = O(n)

iv. 2n = Ω(n!)

v. 2n + n100 = Θ(n100).

(b) Consider an implementation of a queue via a “wraparound” array of size 10.
Initially the queue contains 5 items, with the head item at position 3 and
the tail item at position 7.

We then try to perform 3 ’dequeue’ operations followed by 6 ’enqueue’ op-
erations.

Explain the position of the head pointer and the tail pointer after these 9 [5 marks ]
operations have finished, justifying your answer.

2. Given an array A whose length is a power of two, the following pseudocode
performs a non-random shuffle of the elements of A by splitting A into two
halves, recursively shuffling these, and interleaving the results:

interleave (B,C): # interleaves two arrays of equal length
D = new array(|B|*2)
for i = 0 to |B|−1

D[2i] = B[i]
D[2i+1] = C[i]

return D

shuffle (A):
n = |A|
if n ≤ 2 then return A
else

B = shuffle (A[0,...,n/2−1])
C = shuffle (A[n/2,...,n−1])
return interleave (B,C)

(a) Give a tight asymptotic estimate of the runtime of interleave(B,C) as a
function of n, the size of B. [2 marks ]

(b) Let T (n) denote the runtime of shuffle(A) on an array A of length n (assumed
to be a power of two). Write down an asymptotic recurrence relation satisfied
by T (n). [4 marks ]

Page 1 of 7



(c) Using the Master Theorem, obtain a tight asymptotic estimate for T (n).
State the relevant values of the constants a, b, k appearing in the Master
Theorem. [4 marks ]

3. We have seen a number of sorting algorithms in this course, and in this question
we consider Insertsort, Mergesort, and Quicksort and some particular details of
their behaviour and performance.

(a) For which of these three algorithms is the worst-case running time most [3 marks ]
similar (asympotically) to the best-case running time? Write a few sentences
explaining the reason for this, referring to the structure of the algorithm.

(b) For which of these three algorithms do we see the biggest gap between [3 marks ]
asymptotic best-case running time and asymptotic worst-case running time?
Again, write a few sentences to explain why we see this significant difference,
referring to the structure of the algorithm.

(c) Consider a situation where we are banned from using any direct sorting
algorithm, but we have access to Red-Black trees. Describe how could we [4 marks ]
exploit this data structure to achieve a full sort of n integer keys inO(n lg(n))
time.

4. (a) Compute the edit distance of the two strings “lord” and “board”, giving
details of the distance matrix d. You do not need to build the partner
matrix a but please show the optimum alignment of the strings. [5 marks ]

(b) The edit distance algorithm works with respect to two tables of dimen-
sions (n+ 1)× (m+ 1), where m,n are the lengths of the input strings. We
demonstrated that it has worst-case running-time Θ(nm).

The seam-carving dynamic programming algorithm also works on tables of
size (m + 1) × (n + 1), and it also has worst-case running-time Θ(nm).
Explain why we could infer the asymptotic running-time of seam carving by
comparison to edit distance, making reference to the table dimensions and
recurrence details of both problems. [3 marks ]

(c) The running time of both of the algorithms (mentioned in part (b)) is Θ(mn)
but they take inputs of different types and sizes. For which algorithm would
we consider the running-time to be asymptotically lower with respect to the
size of the input? [2 marks ]

5. Consider the following grammar (with start symbol S) for even-length palin-
dromic strings over {a, b}:

S → ε | aSa | bSb

Convert this grammar to one in Chomsky Normal Form. The resulting grammar
should generate exactly the same strings as the above, with the exception of ε. [10 marks ]

Page 2 of 7



PART B

1. In this question we consider open-address hash tables with probing. Specifically,
we consider a hash table T of some size m ≥ 3, with cells indexed by elements
of the set [m] = {0, . . . ,m− 1}. Keys will be ordinary natural numbers, and our
table uses the linear hash-probe function

# : N× [m] → [m]

defined by
#(k, i) = (k + i) mod m.

To insert an entry for a new key, we probe cells in the way described in lectures
until we find a free cell; the number of cells thus probed is called the number
of attempts involved in the insertion. We shall be interested here in the total
number of attempts involved in a whole sequence of insertions involving keys
k1, . . . , kn, starting from an empty table.

(a) For an arbitrary n ≤ m, suggest a sequence of distinct keys k1, . . . , kn that
exhibits the best-case behaviour: i.e. one that minimizes the total number
of attempts. Give an exact formula for this total number of attempts as a
function of n. [3 marks ]

(b) Again for an arbitrary n ≤ m, suggest a sequence of distinct keys k1, . . . , kn
exhibiting the worst-case behaviour: i.e. one that maximizes the total num-
ber of attempts. (Recall that individual keys may be larger than m.) Give
an exact formula for this number of attempts as a function of n, briefly
justifying your answer and explaining why this is indeed the worst case.
Also identify the asymptotic growth rate of your function (no justification
required). [8 marks ]

(c) Now suppose we replace the above linear hash-probe function # by some
other hash-probe function #′, also of type N × [m] → [m]. (Recall that
for any key k, it is required that #′(k, 0),#′(k, 1), . . . ,#′(k,m − 1) is a
permutation of [m].) Could this result in a formula for the worst-case number
of attempts that was different from the one you gave in part (b)? Justify
your answer.

[Hint: How many permutations of m are there? How many keys are there?]
[7 marks ]

(d) Our linear hash-probe function # has the interesting (and non-obvious)
property that the total number of attempts required to insert any set of
keys k1, . . . , kn (where n ≤ m) is independent of the order in which these
keys are inserted. Show by an example that there are other hash-probe
functions #′ (of the same type) that do not enjoy this property. You need
not give an explicit mathematical formula for a suitable #′, but your solution
should make it clear that such hash-probe functions do exist. [7 marks ]

Page 3 of 7



2. In this question we consider the problem of computing shortest paths in directed
graphs. We use G = (V,E) to denote our directed graph (with (u, v) ∈ E inter-
preted with the direction u → v) and we consider both “Single-source shortest
paths (SSSP)” (via Dijkstra’s algorithm) and “All pairs shortest paths (APSP)”
(via the Floyd-Warshall dynamic programming algorithm).

For parts (a) and (b) we will consider the following example graph:

(a) Execute Djikstra(G, 0) from start vertex 0 for the example graph, showing
the updates to the set S (of completed vertices), the array d (of “best so [8 marks ]
far” distances) and the array π (of parent nodes for “best so far” paths) at
each step. The initial settings of these parameters, before we consider the
edges outgoing from 0, will be:

S = {0} d 0 ∞ ∞ ∞ ∞ π − Nil Nil Nil Nil

(b) Execute FloydWarshall(G), showing details of each of the matrices D<1, D<2,
D<3, D<4, D<5 as you progress through the stages of the algorithm, and [10 marks ]
writing a sentence of explanation for each. The initial matrix D<0 is

0 1 2 3 4

0
1
2
3
4


0 ∞ ∞ 4 2
1 0 4 2 ∞
∞ ∞ 0 ∞ ∞
∞ ∞ 1 0 ∞
∞ 2 4 3 0


(c) Our Floyd-Warshall algorithm for APSP, which has worst-case running-time

Θ(n3) on a graph of n vertices, operates with an Adjacency matrix represen-
tation of the input graph. If we instead stored the input graph in Adjacency
list format, would it help, hinder or make no difference to the running-time?
Justify your answer with a couple of sentences. [4 marks ]

Page 4 of 7



(d) Our Dijkstra’s algorithm for SSSP works with an Adjacency list representa-
tion of the input graph, and has worst-case running-time Θ((n + m) lg(n))
when an augmented Min-Heap is used to manage the choice of ”best fringe
vertex”. Here m is the number of edges in E. If we instead stored the [3 marks ]
input graph as an Adjacency matrix format, would it help, hinder or make
no difference to the running-time? Justify your answer with a couple of
sentences.

Page 5 of 7



3. In this question we consider the NP-complete problem Independent Set, and
some simple heuristic approaches to the problem. The input to this problem is
an undirected graph G = (V,E).

One simple heuristic for Maximum Independent Set that we will consider is the
following “Greedy” approach:

GreedyIS(V,E):
V ′ ← V,E ′ ← E
I ← ∅
while V ′ 6= ∅

choose v ∈ V ′ of min degree in E ′

(break ties in pref of lower index)
I ← I ∪ {v}
V ′ ← V ′ \ ({v} ∪Nbd(v))
E ′ ← E ′ − {e : v an endpoint of e}

return |I|

Note: we always select a vertex of “minimum residual degree” (degree being
computed in terms of the remaining vertices/edges).

(a) Justify that GreedyIS is polynomial-time. [5 marks ]

(b) Iterate the steps of GreedyIS on the following graph to obtain an Independent
set, and explain why it is not a maximum-sized Independent Set for this [5 marks ]
graph.

(c) Suppose we consider the special case of Independent Set where the input
graph is a tree T = (V,E) with an identified root r ∈ V (there are no other
limitations on structure). This means that for every v ∈ V (T ), the subtree
rooted at v is well-defined - we will refer to this subtree as Tv.

For every v ∈ V (T ), we define the following:

• κv,0 to be the size of the maximum-sized Independent set of subtree Tv
which does not include v itself.

• κv,1 to be the size of the maximum-sized Independent set of subtree Tv
with v belonging to the independent set.

Page 6 of 7



Develop a pair of recurrences which express the value of κv,0 (and similarly [10 marks ]
of κv,1) in terms of the κ values of the child nodes of v. Include the “base
case” when v is a leaf, and then described how we can exploit the recurrences
to design a polynomial-time algorithm to solve Independent Set for a tree.

(d) In lectures we saw a ≤P reduction from 3-Sat to Independent Set, and [5 marks ]
argued that this proves that Independent Set is an NP-complete problem.

Explain why the polynomial-time algorithm you develop in (c) does not
contradict the NP-completeness, referring to the details of the ≤P reduction
in your answer.

Page 7 of 7


