Module Title: Inf2-IADS

Exam Diet (Dec/April/Aug): Aug 2021

Brief notes on answers:
 PART A

1. (a) False, true, true, false, true.
[1 mark each.]
(b) $f(n)$ is bounded below by $\left(n^{2}-n+1\right) \lg n$, and above by $\left(n^{2}-n+1\right) \lg \left(n^{2}\right)=$ $2\left(n^{2}-n+1\right) \lg n$. Hence clear that $f(n)=\Theta\left(n^{2} \lg n\right)$.
[2 marks for the answer, 3 for the justification. The above would suffice: explicit values for c, C, N not required.]
2. (a) In the first step, a new red node bearing 4 (with two trivial leaves) is added as the right child of ' 3 '. In the second step, the red uncle rule is applied, so ' 3 ' and ' 7 ' turn black and ' 5 ' turns red. In the third step, the red root is turned black. [2 marks for first step, 3 marks for second step, 2 marks for third step.]
(b) 4 times. Each application of red-uncle pushes a non-trivial black downwards in order to eliminate a double-red; this may introduce another double-red at the next level up. Since there are 4 non-trivial blacks along each path, this can happen at most 4 times, and it's clear that this max can be attained. [1 mark for answer, 2 for explanation.]
3. The course of computation is:

Operation	Input left	Stack state
	(n)	Exp
Lookup (, Exp	(n)	(Exp) Ops
Match (n)	Exp) Ops
Lookup n, Exp	n)	n Ops) Ops
Match n)	Ops) Ops
Lookup Ops,))	Ops
Match)		Ops
Lookup Ops, \$		Stack empties

[2 marks for attempting something of the right form, and 1 mark per correct line.]

4. (worked example and problem solving, 10 marks)

We have been given the initial distance matrix $D^{<0}$ in the question.
To compute $D^{<1}$ we allow ourselves to consider intermediate visits through V_{1}, which is $\{0\}$. We can do this by computing the "matrix sum" of column 0 and row 0 , which is

$$
\left[\begin{array}{cccc}
0 & -1 & 3 & 3
\end{array}\right] \quad "+"\left[\begin{array}{c}
0 \\
2 \\
\infty \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
- & - & - & \\
- & 1 & 5 & 5 \\
- & \infty & \infty & \infty \\
- & \mathbf{1} & 5 & 5
\end{array}\right]
$$

with the highlighted values being lower than what we had in $D^{<0}$. Hence

$$
D^{<1}=\left[\begin{array}{cccc}
0 & -1 & 3 & 3 \\
2 & 0 & 2 & 5 \\
\infty & \infty & 0 & 4 \\
2 & 1 & 5 & 0
\end{array}\right]
$$

Next for building $D^{<2}$ we consider intermediate vertex 1 and this may be helpful, given the -1 valued edge $(0 \rightarrow 1)$. The alternate options are given by the following matrix:

$$
\left[\begin{array}{llll}
2 & 0 & 2 & 5
\end{array}\right] \quad "+"\left[\begin{array}{c}
-1 \\
0 \\
\infty \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & - & \mathbf{1} & 4 \\
- & - & - & - \\
\infty & - & \infty & \infty \\
3 & - & \mathbf{3} & 6
\end{array}\right]
$$

with the values which improve on $D^{<1}$ in bold. We have

$$
D^{<2}=\left[\begin{array}{cccc}
0 & -1 & \mathbf{1} & 3 \\
2 & 0 & 2 & 5 \\
\infty & \infty & 0 & 4 \\
2 & 1 & \mathbf{3} & 0
\end{array}\right]
$$

The matrix $D^{<3}$ will be identical to that for $D^{<2}$ - to see this, note that any simple path through simple path through vertex 2 incurs a cost of at least 5 (assuming the -1 edge is used), which is \geq every non- ∞ value already there. Also, the remaining ∞ values are in the row for 2 , so cannot be improved in this iteration.
Finally, we can allow routes with 3 as an intermediate point. Every simple path through vertex 3 uses the subpath $2 \rightarrow 3 \rightarrow 0$, and (allowing the use of the - 1 edge) has cost at least 5 , and only is of value in improving ∞ cells.
For cell $(2,0)$, we have $D^{<3}[2,3]+D^{<3}[3,0]=4+2=6$.
For cell $(2,1)$, we have $D^{<3}[2,3]+D^{<3}[3,1]=4+1=5$. Hence

$$
D^{<4}=\left[\begin{array}{cccc}
0 & -1 & 1 & 3 \\
2 & 0 & 2 & 5 \\
6 & 5 & 0 & 4 \\
2 & 1 & 3 & 0
\end{array}\right]
$$

marking: 3 marks for computing/explaining $D^{<1}$ (depending on detail), 3 marks for computing/explaining $D^{<2}, 2$ marks for explaining why $D^{<3}$ is $D^{<2}, 2$ marks for computing/explaining $D^{<4}$.

5. (worked example for 6 , some reasoning for 4)

(a) The graph.

The reduction aims to find one vertex from each triangle (to satisfy each clause) hence we require $k=5$ for the I.S. The edge-count is 26 , coming from 5 triangles (15 edges total) and the clashing literals for x_{1} contributing 2 edges, for x_{2} contributing 2 , for x_{3} contributing 4 , for x_{4} contributing 2 and for x_{5} contributing 1 . marking: 3 marks for the diagram, 1 mark for $k, 2$ marks for the number of edges.
(b) Vertex Cover and Independent Set have a very close relationship which leads to an almost-trivial (polynomial-time) "reduction": we know that for any graph G, G has an Independent set of size $k \Leftrightarrow G$ has a Vertex Cover of size $n-k$. This is for the exact same graph, and means that the reduction in either direction just flips between k and $n-k$.
Therefore to reduce 3-Sat to Vertex Cover, we just carry out exactly the same graph construction, but then change the value k to $n-k$ (in our example we would use $15-5=10$ for the Vertex Cover reduction.
marking: 2 marks for a good explanation/construction, just 1 mark for using transitivity of reductions.
(c) The reason we can tell this formula must be satisfiable is because we known that (by analysis of the expected value of a random assignment) every 3-CNF formula has an assignment to satisfy $\geq \frac{7}{8} m$ clauses. Since we have $m=5$ clauses, this value is $\frac{35}{8}=4.375$; hence we know some assignment satisfies all 5 clauses.
marking: 2 marks for the right answer with a decent explanation.

PART B:

1. (a) Something like the following (minor variations allowed):
```
MergeSort3(A,p,q):
    if q-p == 1
        return [A[p]]
    else if q-p == 2
        if A[p] <= A[p+1] then return [A[p],A[p+1]]
        else return [A[p+1],A[p]]
        else
        r = floor((2p+q)/3), s = floor((p+2q)/3)
        B = MergeSort3(A,p,r)
        C = MergeSort3(A,r,s)
        D = MergeSort3(A,s,q)
        return Merge3(B,C,D)
```

[3 marks for something of broadly the right form; 2 marks for correct base cases; 2 marks for details of split.]
(b) The recurrence relation is:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 2 \\ 3 T(n / 3)+\Theta(n) & \text { otherwise }\end{cases}
$$

The Master Theorem therefore applies with $a=b=3, k=1$. Since $\log _{3} 3=1$, we are in the 'balanced case' and the solution is $T(n)=\Theta(n \lg n)$ (as for binary mergesort).
[3 marks for recurrence relation, 1 for solution, 2 for explanation.]
(c) For a subarray of size 9 , there are $1+3+9=13$ calls to MergeSort3. In general, for $n=3^{d}$, there are $(3 n-1) / 2$ calls (obtained as the geometric sum $\left.\sum_{i=0}^{d} 3^{i}\right)$. For ordinary mergesort, the corresponding formula is $(2 n-1)$ where $n=2^{d}$. [2 marks for the size 9 case, 2 for the general formula, 2 for the binary analogue.]
(d) We reason informally. If we first ignore the $O(1)$ 'error terms', then at each level of the recursion, the sizes of all calls to Merge3 sum to n, so the number of comparisons for this level is estimated by $5 n / 3$. And there are about $\log _{3} n$ recursion levels. So total number of comparisons is about $(5 n / 3) \log _{3} n=$ $(5 /(3 \lg 3)) n \lg n \simeq 1.05 n \lg n$.
For the error terms, there is an $O(1)$ contribution for each call, and by part (c) there are $\Theta(n)$ calls. So we have an upper bound of $(5 /(3 \lg 3)) n \lg n-\Theta(n)$ for the number of comparisons. For binary mergesort, we know from lectures, the corresponding formula is just $n \lg n-\Theta(n)$ (we know from lectures that a binary merge of size n requires at most $n-1$ comparisons).
[This part is more challenging, though I'm not expecting anything more rigorous than the above. 3 marks for the coefficient $5 /(3 \lg 3)$; 1 mark for the error term; 2 marks for the binary version.]
2. (a) (bookwork/simple workings, 4 marks) The algorithm is driven by two nested for-statements, the outer iterating n times, the inner one iterating C times. The statements within the inner loop just carry out $\Theta(1)$ operations (comparison, addition, subtraction) on each iteration, so overall $\Theta(n C)$ time.
marking: 4 marks for the right answer
(b) (worked example, 8 marks)

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	3	3	3	3	3
2	0	0	0	3	4	4	4	7
3	0	0	0	3	4	5	5	7

marking: 2 marks for dimensions/labelling right, 1 mark for 0 -row and 0column, the other 5 marks for the column details.
(c) (worked example, 4 marks)

The empty set will satisfy the constraint, as will each of the singleton sets. This is 4 sets altogether. For sets with two distinct weights, the only set that will fit is $\{3,4\}$. Therefore 5 of the 8 subsets are feasible.
marking: 4 marks for the right answer.
(d) (problem solving, 6 marks)

The new recurrence for feas basically exchanges the "maximisation" for summation:

$$
\operatorname{feas}\left(\mathbf{w}[\mathbf{k}], C^{\prime}\right)=\left\{\begin{array}{cl}
1 & C^{\prime}=0 \\
1 & k=0 \\
\operatorname{feas}\left(\mathbf{w}[\mathbf{k}-\mathbf{1}], C^{\prime}\right) & k>0, C^{\prime}>0, w_{k}>C^{\prime} \\
\left(\operatorname{feas}\left(\mathbf{w}[\mathbf{k}-\mathbf{1}], C^{\prime}\right)+\right. & \text { otherwise } \\
\left.\operatorname{feas}\left(\mathbf{w}[\mathbf{k}-\mathbf{1}], C^{\prime}-w_{k+1}\right)\right) &
\end{array}\right.
$$

Note the extra difference that at the base cases we write 1 (as our measure is the existence of a solution, not the value of that solution).
marking: 4 marks for the details of the recursive branches, and 2 marks for the base cases being correct.
(e) (reflection, 3 marks)

Whether this naïve method will be a fast way to return a uniform random sample depends on how dense the feasible solutions in the set $\{0,1\}^{n}$. If feas $(\mathbf{w}[\mathbf{n}], C) \geq$ $d \cdot 2^{n}$ for some constant $d>0$ which is bounded away from 0 , then we would expect to be able to return a solution after a reasonable number of trials. marking: 3 marks for a reasonable consideration of relevant issues.
3. The Firefighter problem.
(a) worked example, 6 marks

If we choose the defence strategy (s, r), then at time step 0 , we have threatened nodes q and $s \ldots$ and the first defence is node s, so q burns and s is safe. However, q now only has one not-burnt-yet neighbour, r, so T_{1} is then just $\{r\}$. Then by defending r at time step 2 , that means that q has no undefended threatened neighbours, and therefore the fire's spread is contained ... after 2 defence steps.
marking: 3 marks for the shorter strategy, and 3 marks for the explanation.
(b) problem solving, 13 marks

Algorithm fireFighter $\left(G=(V, E), f, v_{1}, \ldots, v_{k}\right)$
initialise arrays B, D to "all False"
$B[f] \leftarrow$ True
Q.enqueue $(f, 0)$
count $\leftarrow 1$
$t \leftarrow 0$
6. while $(t \leq k+1$ and $Q . \operatorname{isEmpty}()=\operatorname{FALSE})$ do
7. $\quad\left(u, t^{\prime}\right) \leftarrow$ Q.dequeue ()
8. if $t^{\prime}=t$ and $t \leq k+1$ then
9. if count $=0$ return "TruE"
10. else
11. $\quad t \leftarrow t+1$
12. \quad count $\leftarrow 0$
13. if $t \leq k$ then $D\left[v_{t}\right] \leftarrow$ True
14. for all $w \in N b d(u)$ do
15. if $B[w]=$ FALSE and $D[w]=$ FALSE then
16. $\quad B[w] \leftarrow$ True
17. \quad count \leftarrow count +1
18. Q.enqueue (w, t)
19. return "FAlSE"
marking: Up to 10 marks for the pseudocode, depending on how good. Up to 3 marks for explaining why it's still $O(m+n)$.
(c) problem solving, 6 marks

Students are asked to give a graph where the "effective degree" heuristic fails to minimize steps to containment. Here is one example, a tree: the optimum (for time steps to containment) strategy is to defend v at step 1 , thus containing/burning the tree in 3 steps; however, the "effective degree" strategy will defend w first, thus forcing 4 steps to contain the burning.
marking: 4 marks for the example, 2 for explaining.

