Informatics 2 — Introduction to Algorithms
and Data Structures
Tutorial 6 - Greedy and Dynamic Programming

January 25, 2024

1. In this question, you are asked to execute Dijkstra’s Shortest Path Algorithm starting
from node 0 in Figure 1. Show the steps of the algorithm and the value of d(v)
computed for each node v added to the set S of explored nodes. Also show the shortest
path P, which is computed for each such new node u throughout the execution of the
algorithm.

Figure 1: A directed graph with edge lengths indicated over the edges.

2. Consider the fractional knapsack problem, in which there is a set of n infinitely divisible
items with values v;, for i = 1,...,n and weights w;, for i = 1,...,n, and there is a
total weight constraint W. The goal is to find fractions (z1, ..., x,) of each item, with
0 < z; <1 such that >.! , ; - v; is maximised, subject to the total weight constraint
ZZ‘L:I ;- W; S Ww.

A greedy algorithm for the fractional knapsack problem in each step chooses an item
i based on some criterion and adds the largest fraction z; of item ¢ that is possible to
fit in the knapsack, without violating the weight constraint, given the items already
added to the knapsack in previous steps. The algorithm terminates when the total
weight of items included in the knapsack exactly meets the weight constraint, or when
all of the items have entirely been added (i.e., ; = 1 for all ¢) in the knapsack.

Consider the following three criteria for selecting the item to be added to the knapsack:



(a) Add the item with the largest value v; among those not already considered
(Criterion a).

(b) Add the item with the smallest weight w; among those not already considered
(Criterion b).

(¢) Add the item with the largest ratio v;/w; among those not already considered
(Criterion c).

The first objective is to prove that:

(a) the greedy algorithms with Criterion a or Criterion b are not optimal.

(b) the greedy algorithm with Criterion ¢ is optimal.

Consider the greedy algorithm with Criterion ¢ for the (0/1)-Knapsack problem that
we saw in the lectures, which either adds a job entirely to the knapsack or not at all.
Does it solve the 0/1-Knapsack problem optimally? Provide either a correctness proof
or a counterexample to support your claim.

. In the UK, coins have demoninations 1p, 2p, 5p, 10p, 20p, 50p, £1 and £2. A
frequently-executed task in the retail sector involves taking an input value (say 88p)
and calculating a collection of coins (which may include duplicates) which will sum
to that value. We assume that we have an unlimited supply of coins of each value.
Formally, the coin changing problem is the following:

Input: An input value v € Ny, and a sequence of coin values cg, c1,...cp € Np.

Output: A multiset S of coins with values that sum to v, whose size is the minimum
possible for v in this system. The solution will be represented as a list S of length k,
with S[i] being the number of coins of value ¢;, for each ¢ € [0, k].

We may assume that a solution is always possible (e.g., by assuming that ¢ = 1).

Design a dynamic programming-based algorithm which solves the coin changing prob-
lem. Run your algorithm on the following input with & = 2: v =18, ¢ = 1, ¢ = 5,
and ¢cp = 7.

Instead of the dynamic programming algorithm, perhaps a simple greedy algorithm
could work: as the greedy criterion, always choose the coin of maximum value among
those whose value is smaller than the remaining value. What is the outcome of the
algorithm on the example above?

. A contiguous subsequence of length k of a sequence S is a subsequence which consists
of k consecutive elements of S. For instance, if S is 1,2,3,—-11,10,6,—10,11, —5,
then 3, —11,10 is a contiguous subsequence of S of length 3. Give an algorithm based
on dynamic programming that, given a sequence S of n numbers as input, runs in
linear time and outputs the contiguous subsequence of S of maximum sum. Assume
that a subsequence of length 0 has sum 0. For the example above, the answer of the
algorithm would be 10,6, —10,11 with a sum of 17.



