
Introduction to Algorithms and
Data Structures

Greedy Algorithms: Dijkstra's algorithm for shortest paths

Going to the EICC

What is the fastest way to go from the School of Informatics
to the EICC?

https://www.google.com/maps/dir/School+of+Informatics,+Informatics+Forum,+10+Crichton+Street,+Newington,+Edinburgh+EH8+9AB,+United+Kingdom/The+Exchange,+EICC,+Edinburgh+International+Conference+Centre,+Morrison+Street,+Edinburgh/@55.9451491,-3.2034168,16z/data=!3m2!4b1!5s0x4887c783961ed329:0x99698a3d70a98726!4m14!4m13!1m5!1m1!1s0x4887c78381d04457:0xd072ab38eb50c7a4!2m2!1d-3.1872828!2d55.9447872!1m5!1m1!1s0x4887c7a3b36f1d59:0x8e1efde2c5173ff1!2m2!1d-3.2094992!2d55.9459629!3e2?entry=ttu
https://www.google.com/maps/dir/School+of+Informatics,+Informatics+Forum,+10+Crichton+Street,+Newington,+Edinburgh+EH8+9AB,+United+Kingdom/The+Exchange,+EICC,+Edinburgh+International+Conference+Centre,+Morrison+Street,+Edinburgh/@55.9451491,-3.2034168,16z/data=!3m2!4b1!5s0x4887c783961ed329:0x99698a3d70a98726!4m14!4m13!1m5!1m1!1s0x4887c78381d04457:0xd072ab38eb50c7a4!2m2!1d-3.1872828!2d55.9447872!1m5!1m1!1s0x4887c7a3b36f1d59:0x8e1efde2c5173ff1!2m2!1d-3.2094992!2d55.9459629!3e2?entry=ttu

Shortest Paths in Graphs

Shortest Paths in Graphs
• Input: A directed graph , and a designated node

 in . We also assume that every node in is reachable
from . We are also given a length for every edge in .

G = (V, E)
s V u V

s ℓe e E

Shortest Paths in Graphs
• Input: A directed graph , and a designated node

 in . We also assume that every node in is reachable
from . We are also given a length for every edge in .

G = (V, E)
s V u V

s ℓe e E

• Output: For every node in , a shortest path ~ from
to .

u V s u s
u

Shortest Paths in Graphs
• Input: A directed graph , and a designated node

 in . We also assume that every node in is reachable
from . We are also given a length for every edge in .

G = (V, E)
s V u V

s ℓe e E

• Output: For every node in , a shortest path ~ from
to .

u V s u s
u

• To be more precise, a list of paths:

Shortest Paths in Graphs
• Input: A directed graph , and a designated node

 in . We also assume that every node in is reachable
from . We are also given a length for every edge in .

G = (V, E)
s V u V

s ℓe e E

• Output: For every node in , a shortest path ~ from
to .

u V s u s
u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …

What about undirected
graphs?

• Input: A directed graph , …G = (V, E)

What about undirected
graphs?

• Input: A directed graph , …G = (V, E)

u v

What about undirected
graphs?

• Input: A directed graph , …G = (V, E)

u v

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

not a shortest path!

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

not a shortest path!

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

not a shortest path!

a shortest path!

Dĳkstra’s Algorithm

Dĳkstra’s Algorithm

• Proposed by Edsger Dijkstra in 1959.

Dĳkstra’s Algorithm

• Proposed by Edsger Dijkstra in 1959.

• Idea: Maintain a set of nodes for which we have
found the shortest path distance from .

S u
d(u) s

Dĳkstra’s Algorithm

• Proposed by Edsger Dijkstra in 1959.

• Idea: Maintain a set of nodes for which we have
found the shortest path distance from .

S u
d(u) s

• We may refer to as the explored part of the graph. S

Dĳkstra’s Algorithm

• Proposed by Edsger Dijkstra in 1959.

• Idea: Maintain a set of nodes for which we have
found the shortest path distance from .

S u
d(u) s

• We may refer to as the explored part of the graph. S

• Initially, = { } and = 0.S s d(s)

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

s u v x y z

⏟shortest path distances from s

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

⏟shortest path distances from s

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

3

Dĳkstra’s Algorithm
• Proposed by Edsger Dijkstra in 1959.

• Idea: Maintain a set of nodes for which we have found the
shortest path distance from .

S u
d(u) s

• We may refer to as the explored part of the graph. S

• Initially, = { } and = 0.S s d(s)

Dĳkstra’s Algorithm
• Proposed by Edsger Dijkstra in 1959.

• Idea: Maintain a set of nodes for which we have found the
shortest path distance from .

S u
d(u) s

• We may refer to as the explored part of the graph. S

• Initially, = { } and = 0.S s d(s)

• For every node , we determine the shortest path
that can be constructed by traveling along a path ~ for  

 , followed by (,).

v ∈ V−S
s u

u ∈ S u v

Dĳkstra’s Algorithm

• For every node , we determine the shortest path
that can be constructed by traveling along a path ~ for  

 , followed by (,).

v ∈ V−S
s u

u ∈ S u v

Dĳkstra’s Algorithm

• For every node , we determine the shortest path
that can be constructed by traveling along a path ~ for  

 , followed by (,).

v ∈ V−S
s u

u ∈ S u v

• In other words, we choose node such that 
 

v ∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

Dĳkstra’s Algorithm

• For every node , we determine the shortest path
that can be constructed by traveling along a path ~ for  

 , followed by (,).

v ∈ V−S
s u

u ∈ S u v

• In other words, we choose node such that 
 

v ∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

• Add to and define .v S d(v) = d′ (v)

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2
3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

d′ (v) = d(s) + ℓ(s,v) = 2 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (y) = d(u) + ℓ(u,y) = 4

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (y) = d(u) + ℓ(u,y) = 4

d′ (x) = d(u) + ℓ(u,x) = 2

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (y) = d(u) + ℓ(u,y) = 4

d′ (x) = d(u) + ℓ(u,x) = 2

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

In other words, we choose node
 such that 

 

Add to and define .

v
∈ V−S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

Iteration 1

d′ (u) = d(s) + ℓ(s,u) = 1

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (x) = d(s) + ℓ(s,x) = 4

1

Iteration 2

d′ (v) = d(s) + ℓ(s,v) = 2

d′ (y) = d(u) + ℓ(u,y) = 4

d′ (x) = d(u) + ℓ(u,x) = 2

2

3

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
d′ (z) = d(v) + ℓ(v,z) = 5

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
d′ (z) = d(v) + ℓ(v,z) = 5

3

x

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
d′ (z) = d(v) + ℓ(v,z) = 5

3

x

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
d′ (z) = d(v) + ℓ(v,z) = 5

3

x

A[x] = 2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1

d′ (x) = d(u) + ℓ(u,x) = 2

2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

d′ (y) = d(u) + ℓ(u,y) = 4
d′ (z) = d(v) + ℓ(v,z) = 5

3

x

A[x] = 2

2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3
d′ (z) = d(x) + ℓ(x,z) = 4

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3
d′ (z) = d(x) + ℓ(x,z) = 4

y

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3
d′ (z) = d(x) + ℓ(x,z) = 4

y

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3
d′ (z) = d(x) + ℓ(x,z) = 4

y

A[y] = 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2

d′ (y) = d(x) + ℓ(x,y) = 3
d′ (z) = d(x) + ℓ(x,z) = 4

y

A[y] = 3

3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

d′ (z) = d(x) + ℓ(x,z) = 4

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

d′ (z) = d(x) + ℓ(x,z) = 4
z

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

d′ (z) = d(x) + ℓ(x,z) = 4
z

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

d′ (z) = d(x) + ℓ(x,z) = 4
z

A[z] = 4

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3 4

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in
for which 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

3

2 3 4

Are we done?

Are we done?
• Output: For every node in , a shortest path ~ from

to .
u V s u s

u

Are we done?
• Output: For every node in , a shortest path ~ from

to .
u V s u s

u

• To be more precise, a list of paths:

Are we done?
• Output: For every node in , a shortest path ~ from

to .
u V s u s

u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …

Are we done?
• Output: For every node in , a shortest path ~ from

to .
u V s u s

u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …

s u v x y z

0 1 2 2 3 4

Are we done?
• Output: For every node in , a shortest path ~ from

to .
u V s u s

u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …

s u v x y z

0 1 2 2 3 4

This is only a list of shortest path lengths, not the paths themselves!

From lengths to paths

From lengths to paths

• When we add a node to , we record the edge (,) that
led us to explore .

v S u v
v

From lengths to paths

• When we add a node to , we record the edge (,) that
led us to explore .

v S u v
v

• This is enough to recursively recover the path : is
just + (,). In turn, is + (,), where is the
node from which we explored , and so on.

Pv Pv
Pu u v Pu Pw w u w

u

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

This is enough to prove correctness. Why?

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .S

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .S

Base Case: | | = 1S

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S

s u v x y z

0

⏟shortest path distances from s

3

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .S

Base Case: | | = 1, = , trivially shortest path.S S {s}, d(s) = 0

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .S

Base Case: | | = 1, = , trivially shortest path.S S {s}, d(s) = 0

Induction Hypothesis: Assume that it holds for | | = for some
.

S k
k ≥ 1

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .S

Base Case: | | = 1, = , trivially shortest path.S S {s}, d(s) = 0

Induction Hypothesis: Assume that it holds for | | = for some
.

S k
k ≥ 1

Induction Step: We will prove that it holds for | | = S k + 1

Adding a node

Induction Step: We will prove that it holds for | | = S k + 1

Adding a node

Induction Step: We will prove that it holds for | | = S k + 1

Let be the node added to . Let (,) be the final edge
on the path .

v* S u* v*
Pv*

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

3 Let be the node added to
. Let (,) be the final

edge on the path .

v*
S u* v*

Pv*

Running Example
(KT Figure 5.7)

s

u

v

y

x

z

1

2

4

3

1

2

1

2

S s u v x y z

0

⏟shortest path distances from s

1 2

3 Let be the node added to
. Let (,) be the final

edge on the path .

v*
S u* v*

Pv*

Adding a node

Induction Step: We will prove that it holds for | | = S k + 1

Let be the node added to . Let (,) be the final edge
on the path .

v* S u* v*
Pv*

Adding a node

Induction Step: We will prove that it holds for | | = S k + 1

Let be the node added to . Let (,) be the final edge
on the path .

v* S u* v*
Pv*

Assume by contradiction that is not a shortest - path.Pv* s v*

Adding a node

Induction Step: We will prove that it holds for | | = S k + 1

Let be the node added to . Let (,) be the final edge
on the path .

v* S u* v*
Pv*

Assume by contradiction that is not a shortest - path.Pv* s v*

That means that there exists some other path that is
shorter than .

P
Pv*

Adding a node
Assume by contradiction that is not a shortest - path.Pv* s v*

That means that there exists some other path that is
shorter than .

P
Pv*

Adding a node
Assume by contradiction that is not a shortest - path.Pv* s v*

That means that there exists some other path that is
shorter than .

P
Pv*

Fact: starts in and must leave at some point. Why?P S S

Adding a node
Assume by contradiction that is not a shortest - path.Pv* s v*

That means that there exists some other path that is
shorter than .

P
Pv*

Fact: starts in and must leave at some point. Why?P S S

Let be the first node of that is not in .y* P S

Adding a node
Assume by contradiction that is not a shortest - path.Pv* s v*

That means that there exists some other path that is
shorter than .

P
Pv*

Fact: starts in and must leave at some point. Why?P S S

Let be the first node of that is not in .y* P S

Let be the node “just before” , i.e., the last node of
before it leaves .

x* y* P
S

Pictorially

Let be the node added to . Let (,) be the final edge on the path
.

Let be the first node of that is not in .

Let be the node “just before” , i.e., the last node of before it leaves
.

v* S u* v*
Pv*

y* P S

x* y* P
S

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Correctness

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Correctness

We know that the - path is a shortest path. Why?s x* Px*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Correctness

We know that the - path is a shortest path. Why?s x* Px*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

Correctness
Theorem: Consider the set at any point in the execution of the
algorithm. For each , the path is a shortest - path.

S
u ∈ S Pu s u

Proof by induction on the size of .

Base Case: | | = 1, = , trivially shortest path.

Induction Hypothesis: Assume that it holds for | | = for some
.

Induction Step: We will prove that it holds for | | =

S

S S {s}, d(s) = 0

S k
k ≥ 1

S k + 1

Correctness

We now that the - path is a shortest path. Why? 
By the induction hypothesis.

s x* Px*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

Correctness

We now that the - path is a shortest path. Why? 
By the induction hypothesis.

s x* Px*

This means that () () = () ℓ P′ ≥ ℓ Px* d x*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

Correctness

We now that the - path is a shortest path. Why? 
By the induction hypothesis.

s x* Px*

This means that () () = () ℓ P′ ≥ ℓ Px* d x*

Therefore () () + (,) (,) + () ()ℓ P ≥ ℓ P′ ℓ x* y* ≥ ℓ x* y* d x* ≥ d′ y*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

Correctness

We now that the - path is a shortest path. Why? 
By the induction hypothesis.

s x* Px*

This means that () () = () ℓ P′ ≥ ℓ Px* d x*

Therefore () () + (,) (,) + () ()ℓ P ≥ ℓ P′ ℓ x* y* ≥ ℓ x* y* d x* ≥ d′ y*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Correctness

Therefore () ()ℓ P ≥ d′ y*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Correctness

Therefore () ()ℓ P ≥ d′ y*

At the same time, we know that () () = ().
Why?

d′ y* ≥ d′ v* ℓ Pv*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

  

 
Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

Correctness

Therefore () ()

At the same time, we know that () () = ().
Why? Because was chosen by Dijkstra’s Algorithm.

ℓ P ≥ d′ y*

d′ y* ≥ d′ v* ℓ Pv*
v*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Putting it together

Therefore () ()

At the same time, we know that () ().

That implies that () (), a contradiction.

ℓ P ≥ d′ y*

d′ y* ≥ ℓ Pv*

ℓ P ≥ ℓ Pv*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Putting it together

Therefore () ()

At the same time, we know that () ().

That implies that () (), a contradiction.

ℓ P ≥ d′ y*

d′ y* ≥ ℓ Pv*

ℓ P ≥ ℓ Pv*

s

x*

u*

y*

v*

Pu*

P′ ⊂ P

Px*

d′ (y*) = min
e=(u,y*):u∈S

d(u) + ℓe

Assume by contradiction that is not a shortest - path.

That means that there exists some other path that is shorter
than .

Pv* s v*

P
Pv*

Running Time

Lets look at the pseudocode.

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here?

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here? |V | − 1 = n − 1

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here? |V | − 1 = n − 1

Here, consider every node outside , 
and then consider all edges between  

and .

v S
S

v

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here? |V | − 1 = n − 1

Here, consider every node outside , 
and then consider all edges between  

and .

v S
S

v
|E | = m

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here? |V | − 1 = n − 1

Here, consider every node outside , 
and then consider all edges between  

and .

v S
S

v
|E | = m

Overall: . O(nm)

Dĳkstra’s Algorithm
(Pseudocode)

Dijsktra ()

Let be the set of explored nodes, be a list of distances.

Initially and ,

While

Select a node connected via an edge with at least one node in such that 
 

Add to and define

Let  

G, ℓ

S A

S = {s} d(s) = 0 A[s] = d(s) = 0

S ≠ V

v ∈ V − S S

d′ (v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′ (v)

A[v] = d(v)

How many iterations here? |V | − 1 = n − 1

Here, consider every node outside , 
and then consider all edges between  

and .

v S
S

v
|E | = m

Overall: . O(nm) Not terrible, not great.

Running Time

Lets look at the pseudocode.

That was somewhat naive. Can we do better?

Priority Queues

• Priority queue: A data structure that maintains

• A set of elements .

• Each with an associated value, .

• The values denote priorities.

• For Max-Priority Queues, the elements with the
largest values are those with the highest priority.

S

key(v)

Priority Queues

• Priority queue: A data structure that maintains

• A set of elements .

• Each with an associated value, .

• The values denote priorities.

• For Max-Priority Queues, the elements with the
largest values are those with the highest priority.

S

key(v)

Priority Queues

• Priority queue: A data structure that maintains

• A set of elements .

• Each with an associated value, .

• The values denote priorities.

• For Min-Priority Queues, the elements with the
smallest values are those with the highest priority.

S

key(v)

Priority Queue Operations

• inserts a new item in the priority queue.

• finds the element with the maximum priority
(the smallest value) in the priority queue and returns it (but
does not remove it).

• finds the element with the maximum
priority (smallest value) in the priority queue, returns it,
and deletes it from the queue.

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

Priority Queue Operations

• finds the element with the maximum
priority (smallest value) in the priority queue, returns it,
and deletes it from the queue.

• changes the key value of element
to .

ExtractMin(Q)

ChangeKey(Q, v, a) v
key(v) = a

Running Time

Lets look at the pseudocode.

That was somewhat naive. Can we do better?

Running Time

Lets look at the pseudocode.

That was somewhat naive. Can we do better?

1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

Running Time

Lets look at the pseudocode.

That was somewhat naive. Can we do better?

1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

2. Place the nodes in a priority queue, with as the key
of .

d′ (v)
v

Running Time
1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

2. Place the nodes in a priority queue, with as the key
of .

d′ (v)
v

Running Time
1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

2. Place the nodes in a priority queue, with as the key
of .

d′ (v)
v

How do we get the node to be added to ?v S

Running Time
1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

2. Place the nodes in a priority queue, with as the key
of .

d′ (v)
v

How do we get the node to be added to ?v S

ExtractMin(Q)

Running Time
1. Once we have computed , we

store it, so we don’t have to compute it again.

d′ (v) = min
(u,v):u∈S

d(u) + ℓe

2. Place the nodes in a priority queue, with as the key
of .

d′ (v)
v

How do we get the node to be added to ?v S

ExtractMin(Q)

Issue: Once we add nodes to , we need to update the values
, i.e., the keys in the priority queue.

S
d′ (v)

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

 has not changed!min
e=(u,w):u∈S

d(u) + ℓe

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

 has not changed!min
e=(u,w):u∈S

d(u) + ℓe

(this is because when we explore in the future, it will not be via). w v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

 has not changed!min
e=(u,w):u∈S

d(u) + ℓe

(this is because when we explore in the future, it will not be via). w v

w

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

 has not changed!min
e=(u,w):u∈S

d(u) + ℓe

(this is because when we explore in the future, it will not be via). w v

w

v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 1: .(v, w) ∉ E

 has not changed!min
e=(u,w):u∈S

d(u) + ℓe

(this is because when we explore in the future, it will not be via). w v

w

v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

w

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

w

v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

w

v

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

w

v

ChangeKey(Q, v, a)

Running Time
Issue: Once we add nodes to , we need to update the values

, i.e., the keys in the priority queue.
S

d′ (v)

Consider an iteration when is added to .v S

Let be a node that remains in the priority queue.w ∈ V − S

Case 2: .(v, w) ∈ E

 d′ (w) = min(d′ (w), d(v) + ℓ(v,w))

(the distance is as before, except if the path via is shorter). v

w

v

ChangeKey(Q, v, a) At most once per edge!

Running Time
Lets look at the pseudocode.

That was somewhat naive. Can we do better?

Running Time
Lets look at the pseudocode.

That was somewhat naive. Can we do better?

We need and
operations, plus time for computing the distances.

n ExtractMin(Q) m ChangeKey(Q, v, a)
O(m)

Running Time
Lets look at the pseudocode.

That was somewhat naive. Can we do better?

We need and
operations, plus time for computing the distances.

n ExtractMin(Q) m ChangeKey(Q, v, a)
O(m)

How much time do we need for the priority queue operations?

Running Time
Lets look at the pseudocode.

That was somewhat naive. Can we do better?

We need and
operations, plus time for computing the distances.

n ExtractMin(Q) m ChangeKey(Q, v, a)
O(m)

How much time do we need for the priority queue operations?

O(log n)

Running Time
Lets look at the pseudocode.

That was somewhat naive. Can we do better?

We need and
operations, plus time for computing the distances.

n ExtractMin(Q) m ChangeKey(Q, v, a)
O(m)

How much time do we need for the priority queue operations?

O(log n)

Overall: O(m log n)

Reading
Kleinberg and Tardos Chapter 5.4. (or 4.4. in the online weird
version). Slides follow this religiously.

Roughgarden 9.2., 9.3.

CLRS 24.3.

You can also find visualisers online and play around with them,
e.g., https://www.cs.usfca.edu/~galles/visualization/
Dijkstra.html and the more general https://visualgo.net/en/
sssp?slide=1

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://visualgo.net/en/sssp?slide=1
https://visualgo.net/en/sssp?slide=1

