
Introduction to Algorithms and 
Data Structures

Greedy Algorithms: Dijkstra's algorithm for shortest paths



Going to the EICC

What is the fastest way to go from the School of Informatics 
to the EICC?

https://www.google.com/maps/dir/School+of+Informatics,+Informatics+Forum,+10+Crichton+Street,+Newington,+Edinburgh+EH8+9AB,+United+Kingdom/The+Exchange,+EICC,+Edinburgh+International+Conference+Centre,+Morrison+Street,+Edinburgh/@55.9451491,-3.2034168,16z/data=!3m2!4b1!5s0x4887c783961ed329:0x99698a3d70a98726!4m14!4m13!1m5!1m1!1s0x4887c78381d04457:0xd072ab38eb50c7a4!2m2!1d-3.1872828!2d55.9447872!1m5!1m1!1s0x4887c7a3b36f1d59:0x8e1efde2c5173ff1!2m2!1d-3.2094992!2d55.9459629!3e2?entry=ttu
https://www.google.com/maps/dir/School+of+Informatics,+Informatics+Forum,+10+Crichton+Street,+Newington,+Edinburgh+EH8+9AB,+United+Kingdom/The+Exchange,+EICC,+Edinburgh+International+Conference+Centre,+Morrison+Street,+Edinburgh/@55.9451491,-3.2034168,16z/data=!3m2!4b1!5s0x4887c783961ed329:0x99698a3d70a98726!4m14!4m13!1m5!1m1!1s0x4887c78381d04457:0xd072ab38eb50c7a4!2m2!1d-3.1872828!2d55.9447872!1m5!1m1!1s0x4887c7a3b36f1d59:0x8e1efde2c5173ff1!2m2!1d-3.2094992!2d55.9459629!3e2?entry=ttu
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Shortest Paths in Graphs
• Input: A directed graph , and a designated node 

 in . We also assume that every node  in  is reachable 
from . We are also given a length  for every edge  in .

G = (V, E)
s V u V

s ℓe e E

• Output: For every node  in , a shortest path ~  from  
to . 

u V s u s
u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …
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Are we done?
• Output: For every node  in , a shortest path ~  from  

to . 
u V s u s

u

• To be more precise, a list of paths:

P(u1)P(s) P(u2) P(u3) …

s u v x y z

0 1 2 2 3 4

This is only a list of shortest path lengths, not the paths themselves!
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From lengths to paths

• When we add a node  to , we record the edge ( , ) that 
led us to explore .

v S u v
v

• This is enough to recursively recover the path  :  is 
just  + ( , ). In turn,  is  + ( , ), where  is the 
node from which we explored , and so on.

Pv Pv
Pu u v Pu Pw w u w

u
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Proof by induction on the size of .S

Base Case: | | = 1, = , trivially shortest path.S S {s}, d(s) = 0

Induction Hypothesis: Assume that it holds for | | =  for some 
.

S k
k ≥ 1

Induction Step: We will prove that it holds for | | = S k + 1
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Assume by contradiction that  is not a shortest -  path.Pv* s v*

That means that there exists some other path  that is 
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Fact:  starts in  and must leave  at some point. Why?P S S

Let  be the first node of  that is not in .y* P S
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Pictorially
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.
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Correctness
Theorem: Consider the set  at any point in the execution of the 
algorithm. For each , the path  is a shortest -  path.

S
u ∈ S Pu s u

Proof by induction on the size of .


Base Case: | | = 1, = , trivially shortest path.


Induction Hypothesis: Assume that it holds for | | =  for some 
.


Induction Step: We will prove that it holds for | | = 

S

S S {s}, d(s) = 0

S k
k ≥ 1

S k + 1
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(Pseudocode)
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Correctness

Therefore (  )  (  )


At the same time, we know that (  )  (  ) = (  ). 
Why? Because  was chosen by Dijkstra’s Algorithm.
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Putting it together

Therefore (  )  (  )
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Dijsktra ( ) 

Let  be the set of explored nodes,  be a list of distances.


Initially  and , 


While 


Select a node  connected via an edge with at least one node in  such that 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How many iterations here? |V | − 1 = n − 1

Here, consider every node  outside , 
and then consider all edges between  

and .

v S
S

v
|E | = m

Overall: .  O(nm) Not terrible, not great.  
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• For Max-Priority Queues, the elements with the 
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Priority Queues

• Priority queue: A data structure that maintains


• A set of elements .


• Each with an associated value, .


• The values denote priorities.


• For Min-Priority Queues, the elements with the 
smallest values are those with the highest priority.

S

key(v)



Priority Queue Operations

•  inserts a new item  in the priority queue. 


•  finds the element with the maximum priority 
(the smallest value) in the priority queue and returns it (but 
does not remove it).


•  finds the element with the maximum 
priority (smallest value) in the priority queue, returns it, 
and deletes it from the queue. 

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)



Priority Queue Operations

•  finds the element with the maximum 
priority (smallest value) in the priority queue, returns it, 
and deletes it from the queue. 


•  changes the key value of element  
to .

ExtractMin(Q)

ChangeKey(Q, v, a) v
key(v) = a
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v

ChangeKey(Q, v, a) At most once per edge!
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Running Time
Lets look at the pseudocode. 

That was somewhat naive. Can we do better?

We need   and   
operations, plus  time for computing the distances.

n ExtractMin(Q) m ChangeKey(Q, v, a)
O(m)

How much time do we need for the priority queue operations?

O(log n)

Overall: O(m log n)



Reading
Kleinberg and Tardos Chapter 5.4. (or 4.4. in the online weird 
version). Slides follow this religiously.


Roughgarden 9.2., 9.3.


CLRS 24.3.


You can also find visualisers online and play around with them, 
e.g., https://www.cs.usfca.edu/~galles/visualization/
Dijkstra.html and the more general https://visualgo.net/en/
sssp?slide=1

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://visualgo.net/en/sssp?slide=1
https://visualgo.net/en/sssp?slide=1

