Introduction to Algorithms and Data Structures

Dynamic Programming - Weighted Interval Scheduling
Dynamic Programming

• An technique for solving optimisation problems.

• Term attributed to Bellman (1950s).

 • “Programming” as in “Planning” or “Optimising”.
Dynamic Programming

- The paradigm of dynamic programming:

 - Given a problem P, define a sequence of subproblems, with the following properties:
 - The subproblems are ordered from the smallest to the largest.
 - The largest problem is our original problem P.
 - The optimal solution of a subproblem can be constructed from the optimal solutions of sub-sub-problems. (*Optimal Substructure*).

 - Solve the subproblems from the smallest to the largest. When you solve a subproblem, store the solution (e.g., in an array) and use it to solve the larger subproblems.
Recall: Interval Scheduling

• A set of requests \{1, 2, \ldots, n\}.

• Each request has a starting time \(s(i)\) and a finishing time \(f(i)\).

• Alternative view: Every request is an interval \([s(i), f(i)]\).

• Two requests \(i\) and \(j\) are compatible if their respective intervals do not overlap.

• Goal: Output a schedule which maximises the number of compatible intervals.
Weighted Interval Scheduling

• A set of requests \(\{1, 2, \ldots, n\} \).

• Each request has a starting time \(s(i) \), a finishing time \(f(i) \), and a value \(v(i) \).

• Alternative view: Every request is an interval \([s(i), f(i)]\) associated with a value \(v(i) \).

• Two requests \(i \) and \(j \) are compatible if their respective intervals do not overlap.

• Goal: Output a schedule which maximises the total value of compatible intervals.
Greedy Approaches

• Which one of the following Greedy Algorithms might have a chance to work?
 • Earliest starting time.
 • Smallest interval.
 • Minimum number of conflicts.
 • Earliest finishing time.
Greedy Approaches

- Which one of the following Greedy Algorithms might have a chance to work?
 - Earliest starting time.
 - Smallest interval.
 - Minimum number of conflicts.
 - Earliest finishing time.
Does it work?

No approach that ignores the values can work!
Greedy Approaches

• Which one of the following Greedy Algorithms might have a chance to work?

 • Earliest starting time.

 • Smallest interval.

 • Minimum number of conflicts.

 • Earliest finishing time.

 • Largest value.
Does it work?

value=2

value=3

value=2
A view of the input

• Consider the intervals in sorted order of non-decreasing finishing time, i.e., \(f(1) \leq f(2) \leq \ldots \leq f(n) \).

• For an interval \(j = (s(j), f(j)) \), let \(p_j \) be the largest index \(i < j \) such that intervals \(i \) and \(j \) are disjoint.
 • i.e., \(i \) is the last interval in the ordering that ends before \(j \) begins.
 • if no such interval exists, define \(p_j = 0 \).
Example

v(1)=2, p_1 = 0

v(2)=4, p_2 = 0

v(3)=4, p_3 = 1

v(4)=7, p_4 = 0

v(5)=2, p_5 = 3

v(6)=1, p_6 = 3
Step-by-step?

• Let O be the optimal schedule.

• **Fact**: O either contains interval n or not.
Building up a solution

Is n in \mathbb{O}?

- yes
- no
If n is in O

- What does that mean for the other intervals?
- Any interval that overlaps with n cannot be in O.
- Any interval $j > p_n$ cannot be in O.
- O contains an optimal solution O' of the subproblem $\{1, 2, \ldots, p_n\}$ (why?)
 - Because otherwise we could replace O with $O' \cup \{n\}$ and obtain a better solution.
- Lets use $O(i, \ldots, j)$ to denote the optimal solution on (sorted) intervals i, \ldots, j.
Building up a solution

Is n in O?

- yes
- no

$O = O(1, \ldots, p_n) + n$
If n is not in O

- Then $O = O(1, \ldots, n-1)$

- Same argument: Since n is not chosen, all intervals 1, ..., $n-1$ are “free” to be chosen.

- Not picking the optimal schedule for them would violate the optimality of O.
Building up a solution

Is n in O?

- yes: $O = O(1,\ldots,p_n) + n$
- no: $O = O(1,\ldots,n-1)$
Building up a solution

• So, in order to find O, it suffices to look at smaller problems and find $O(1, \ldots, j)$ for some j.

• Let O_j be a shorthand for $O(1, \ldots, j)$ and let $OPT(j)$ be its total value.

• Define $OPT(0) = 0$.

• Then, $O = O_n$ with value $OPT(n)$.
Building up a solution

Is \(n \) in \(O \)?

- yes: \(O = O(1,...,p_n) + n \)
- no: \(O = O(1,...,n-1) \)
Generalising

Is j in O?

- yes
 - $OPT(j) = OPT(p_j) + v(j)$
- no
 - $OPT(j) = OPT(j-1)$

$OPT(j) = \max\{ OPT(p_j) + v(j), OPT(j-1) \}$
Generalising

Is j in O?

- yes
 - $OPT(j) = OPT(p_i) + v(j)$
- no
 - $OPT(j) = OPT(j-1)$

In other words, j is in O if and only if

$$OPT(p_i) + v(j) \geq OPT(j-1)$$
Building up a solution

What does this look like?

Assume that there was an algorithm that inputed \{1, \ldots, j\} and outputted \text{OPT}(j).

It’s a recurrence relation!

\[
\text{OPT}(j) = \max\{ \text{OPT}(p) + v(j), \text{OPT}(j-1) \}
\]
Building up a solution

• What does this look like?

• Assume that there was an algorithm that inputed \{1, \ldots, j\} and outputted \text{OPT}(j).

• It’s a recurrence relation!

\textbf{ComputeOpt}(j)

\begin{align*}
\text{If } j &= 0 \text{ then } \\
\text{Return } 0 \\
\text{Else } \\
\text{Return } \max\{v(j) + \text{ComputeOpt}(p_j), \text{ComputeOpt}(j-1)\} \\
\text{EndIf}
\end{align*}
Correctness

• ComputeOPT(\(j\)) correctly computes OPT(\(j\)) for each \(j=1, \ldots, n\)

• Proof by induction:

 • Base Case: OPT(0) = 0 by definition.

 • Inductive step: Assume that it is true for all \(i < j\). (inductive hypothesis).

 Return \(\max\{v(j) + \text{ComputeOpt}(p_j), \text{ComputeOpt}(j - 1)\}\)

\[
\text{OPT}(j) = \max\{\text{OPT}(p_i) + v(j), \text{OPT}(j - 1)\}
\]
Example

\[v(1) = 2, \quad p_1 = 0 \]

\[v(2) = 4, \quad p_2 = 0 \]

\[v(3) = 4, \quad p_3 = 1 \]

\[v(4) = 7, \quad p_4 = 0 \]

\[v(5) = 2, \quad p_5 = 3 \]

\[v(6) = 1, \quad p_6 = 3 \]
Example

Return $\max\{v(j) + \text{ComputeOpt}(p_j), \text{ComputeOpt}(j-1)\}$
Another example

\begin{align*}
v(1) &= 1, \quad p_1 = 0 \\
v(2) &= 1, \quad p_2 = 0 \\
v(3) &= 1, \quad p_3 = 1 \\
v(4) &= 1, \quad p_4 = 2 \\
v(5) &= 1, \quad p_5 = 3 \\
v(6) &= 1, \quad p_6 = 4
\end{align*}

\begin{align*}
\text{ComputeOpt}(6) \text{ requires } \text{ComputeOpt}(5) \text{ and } \text{ComputeOpt}(4) \\
\text{ComputeOpt}(5) \text{ requires } \text{ComputeOpt}(4) \text{ and } \text{ComputeOpt}(3) \\
\text{ComputeOpt}(4) \text{ requires } \text{ComputeOpt}(3) \text{ and } \text{ComputeOpt}(2)
\end{align*}
Running time

• What is the running time of the algorithm?

• A problem of size j requires solving problems of sizes $j-1$ and $j-2$.

• Do you know any numbers for which $F(n) = F(n-1) + F(n-2)$?
 • Fibonacci numbers.

• The nth Fibonacci number is approximately $\phi^n/\sqrt{5}$

• The running time of our algorithm is $\Omega(2^n)$!
Example

Return $\max \{ v(j) + \text{ComputeOpt}(p_j), \text{ComputeOpt}(j-1) \}$

Why are we computing these every time?

$p_6 = 3$
$p_5 = 3$
$p_4 = 0$
$p_3 = 1$
$p_2 = 0$
$p_1 = 0$
Memoization

• Compute $\text{ComputeOpt}(j)$ once for every j.

• Store it in an accessible place to use again in the future.

• Keep an array $M[0, \ldots, n]$.

 • Initially $M[j] = \text{“empty”}$ for all j.

 • When $\text{ComputeOpt}(j)$ is calculated, $M[j] = \text{ComputeOpt}(j)$
A more clever implementation

\[\text{M-ComputeOpt}(j) \]

If \(j = 0 \) then
 Return 0

Else if \(\text{M}[j] \) is not empty then
 Return \(\text{M}[j] \)

Else
 \[\text{M}[j] = \max\{v(j) + \text{M-ComputeOpt}(p_i), \text{M-ComputeOpt}(j-1)\} \]
 Return \(\text{M}[j] \)

EndIf
Running time

• In each call of $\textbf{M-ComputeOpt}$, there is a constant number of operations, besides the recursive calls. So the running time is bounded by the number of recursive calls.

• The two recursive calls only happen when $M[j]$ is empty.

• But when they happen, $M[j]$ is no longer empty.

• So the recursively calls only happen $O(n)$ times.

• The running time of $\textbf{M-ComputeOpt}$ is $O(n)$, assuming we are given the intervals as sorted by their finishing times, otherwise $O(n \log n)$, to sort them first.
So our algorithm ...

• ... solved the main problem by solving subproblems of smaller sizes,

• stored the solutions to the smaller problems in an array,

• recalled them from the array every time they needed to used. (memoization).

• Anything else?
What does M-ComputeOpt(n) actually find?

M-ComputeOpt(j)

If j=0 then
 Return 0

Else if $M[j]$ is not empty then
 Return $M[j]$

Else
 $M[j] = \max\{v(j) + M$-ComputeOpt(p_j), M-ComputeOpt($j-1$)\}$
 Return $M[j]$

EndIf

It finds the value of the optimal schedule O. Is that what we were looking for?
Weighted Interval Scheduling

- A set of requests \{1, 2, \ldots, n\}.
 - Each request has a starting time \(s(i)\), a finishing time \(f(i)\), and a value \(v(i)\).
 - Alternative view: Every request is an interval \([s(i), f(i)]\) associated with a value \(v(i)\).
 - Two requests \(i\) and \(j\) are compatible if their respective intervals do not overlap.

- **Goal:** Output a schedule which maximises the total value of compatible intervals.
Weighted Interval Scheduling

- A set of requests \(\{1, 2, \ldots, n\} \).

 - Each request has a starting time \(s(i) \), a finishing time \(f(i) \), and a value \(v(i) \).

 - Alternative view: Every request is an interval \([s(i), f(i)]\) associated with a value \(v(i) \).

- Two requests \(i \) and \(j \) are compatible if their respective intervals do not overlap.

- **Goal:** Output a schedule which maximises the total value of compatible intervals.
From values to schedules

In other words, j is in O if and only if

$$\text{OPT}(p_{j}) + v(j) \geq \text{OPT}(j-1)$$

FindSolution(j)

If $j=0$, no solution

Else

If $v(j) + M(p_{j}) \geq M(j-1)$ then

Output j together with FindSolution(p_{j})

Else

Output FindSolution($j-1$)

End If

End If

This can be done in $O(n)$ time.
Dynamic Programming vs Divide and Conquer

• DP is an optimisation technique and is only applicable to problems with optimal substructure.

• DP splits the problem into parts, finds solutions to the parts and joins them.
 • The parts are not significantly smaller and are overlapping.

• In DP, the subproblem dependency can be represented by a DAG.

• DQ is not normally used for optimisation problems.

• DQ splits the problem into parts, finds solutions to the parts and joins them.
 • The parts are significantly smaller and do not normally overlap.

• In DQ, the subproblem dependency can be represented by a tree.