Introduction to Algorithms and Data Structures

Dynamic Programming - Weighted Interval Scheduling

Dynamic Programming

- An technique for solving optimisation problems.
- Term attributed to Bellman (1950s).
- "Programming" as in "Planning" or "Optimising".

Dynamic Programming

- The paradigm of dynamic programming:
- Given a problem P, define a sequence of subproblems, with the following properties:
- The subproblems are ordered from the smallest to the largest.
- The largest problem is our original problem P.
- The optimal solution of a subproblem can be constructed from the optimal solutions of sub-sub-problems. (Optimal Substructure).
- Solve the subproblems from the smallest to the largest. When you solve a subproblem, store the solution (e.g., in an array) and use it to solve the larger subproblems.

Recall: Interval Scheduling

- A set of requests $\{1,2, \ldots, n\}$.
- Each request has a starting time $s(i)$ and a finishing time $f(i)$.
- Alternative view: Every request is an interval [s(i), $f(i)]$.
- Two requests i and j are compatible if their respective intervals do not overlap.
- Goal: Output a schedule which maximises the number of compatible intervals.

Weighted Interval Scheduling

- A set of requests $\{1,2, \ldots, n\}$.
- Each request has a starting time $s(i)$, a finishing time $f(i)$, and a value $v(i)$.
- Alternative view: Every request is an interval [s(i), f(i)] associated with a value $v(i)$.
- Two requests i and j are compatible if their respective intervals do not overlap.
- Goal: Output a schedule which maximises the total value of compatible intervals.

Greedy Approaches

- Which one of the following Greedy Algorithms might have a chance to work?
- Earliest starting time.
- Smallest interval.
- Minimum number of conflicts.
- Earliest finishing time.

Greedy Approaches

- Which one of the following Greedy Algorithms might have a chance to work?
- Earliest starting time.
- Smallest interval.
- Minimum number of conflicts.
- Earliest finishing time.

Does it work?

No approach that ignores the values can work!
value $=1$
$\cdots \boldsymbol{x}$
value=3

value=1

Greedy Approaches

- Which one of the following Greedy Algorithms might have a chance to work?
- Earliest starting time.
- Smallest interval.
- Minimum number of conflicts.
- Earliest finishing time.
- Largest value.

Does it work?

value=2
value=3

value=2

A view of the input

- Consider the intervals in sorted order of non-decreasing finishing time, i.e., $f(1) \leq f(2) \leq \ldots \leq f(n)$.
- For an interval $j=(s(j), f(j))$, let p_{j} be the largest index $i<j$ such that intervals i and j are disjoint.
- i.e., i is the last interval in the ordering that ends before j begins.
- if no such interval exists, define $\mathrm{p}_{\mathrm{j}}=0$.

Example

$$
v(1)=2, p_{1}=0
$$

$$
\mathrm{v}(2)=4, \mathrm{p}_{2}=0
$$

$$
\frac{v(3)=4, p_{3}=1}{v(4)=7, p_{4}}=0
$$

$$
\frac{v(5)=2, p_{5}=3}{v(6)=1, p_{6}=3}
$$

Step-by-step?

- Let O be the optimal schedule.
- Fact: O either contains interval n or not.

Building up a solution

If n is in O

- What does that mean for the other intervals?
- Any interval that overlaps with n cannot be in O.
- Any interval $j>p_{n}$ cannot be in O.
- O contains an optimal solution O^{\prime} of the subproblem $\left\{1,2, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ (why?)
- Because otherwise we could replace O with O' $\cup\{n\}$ and obtain a better solution.
- Lets use $\mathrm{O}(i, \ldots, j)$ to denote the optimal solution on (sorted) intervals i, \ldots, j.

Building up a solution

If n is not in 0

- Then $\mathrm{O}=\mathrm{O}(1, \ldots, n-1)$
- Same argument: Since n is not chosen, all intervals $1, \ldots, n-1$ are "free" to be chosen.
- Not picking the optimal schedule for them would violate the optimality of O .

Building up a solution

Building up a solution

- So, in order to find O, it suffices to look at smaller problems and find $O(1, \ldots, j)$ for some j.
- Let O_{j} be a shorthand for $\mathrm{O}(1, \ldots, j)$ and let OPT(j) be its total value.
- Define OPT(0) $=0$.
- Then, $\mathrm{O}=\mathrm{O}_{\mathrm{n}}$ with value $\operatorname{OPT}(n)$.

Building up a solution

Generalising

Generalising

Building up a solution

$$
O P T(j)=\max \left\{O P T\left(p_{j}\right)+v(j), O P T(j-1)\right\}
$$

- What does this look like?
- Assume that there was an algorithm that inputed $\{1, \ldots, j\}$ and outputted OPT(j).
- It's a recurrence relation!

Building up a solution

- What does this look like?
- Assume that there was an algorithm that inputed $\{1, \ldots, j\}$ and outputted OPT(j).
- It's a recurrence relation!

ComputeOpt($($)
If $j=0$ then
Return 0
Else
Return $\max \left\{\mathrm{v}(j)+\right.$ ComputeOpt $\left(\mathrm{p}_{\mathrm{j}}\right)$, ComputeOpt $\left.(j-1)\right\}$
Endlf

Correctness

- ComputeOPT(() correctly computes OPT(j) for each $j=1, \ldots$ n
- Proof by induction:
- Base Case: $\operatorname{OPT}(0)=0$ by definition.
- Inductive step: Assume that it is true for all $i<j$. (inductive hypothesis).

Return $\max \left\{\mathrm{v}(\mathrm{j})+\right.$ ComputeOpt $\left(\mathrm{p}_{\mathrm{j}}\right)$, ComputeOpt $\left.(\mathrm{j}-1)\right\}$

$$
O P T(j)=\max \left\{O P T\left(p_{j}\right)+v(j), O P T(j-1)\right\}
$$

Example

$$
v(1)=2, p_{1}=0
$$

$$
\mathrm{v}(2)=4, \mathrm{p}_{2}=0
$$

$$
\frac{v(3)=4, p_{3}=1}{v(4)=7, p_{4}}=0
$$

$$
\frac{v(5)=2, p_{5}=3}{v(6)=1, p_{6}=3}
$$

Example

Return $\boldsymbol{m a x}\left\{v(j)+\right.$ ComputeOpt(p_{j}) , ComputeOpt $\left.(\mathrm{j}-1)\right\}$

Another example

$$
v(1)=1, p_{1}=0
$$

$$
v(2)=1, p_{2}=0
$$

$$
\begin{aligned}
& \frac{\mathrm{v}(3)=1, p_{3}=1}{\mathrm{v}(4)=1, p_{4}=2} \\
& \frac{\mathrm{v}(5)=1, p_{5}=3}{\mathrm{v}(6)=1, p_{6}=4}
\end{aligned}
$$

ComputeOpt(6) requires ComputeOpt(5) and ComputeOpt(4) ComputeOpt(5) requires ComputeOpt(4) and ComputeOpt(3) ComputeOpt(4) requires ComputeOpt(3) and ComputeOpt(2)

Running time

- What is the running time of the algorithm?
- A problem of size j requires solving problems of sizes j-1 and $j-2$.
- Do you know any numbers for which $F(n)=F(n-1)+F(n-2)$?
- Fibonacci numbers.
- The nth Fibonacci number is approximately $\phi^{n} / \sqrt{ } 5$
- The running time of our algorithm is $\Omega\left(2^{n}\right)$!

Example

Memoization

- Compute ComputeOpt() once for every j.
- Store it in an accessible place to use again in the future.
- Keep an array M[0, ... ,n].
- Initially M[j] = "empty" for all j.
- When ComputeOpt() is calculated, $\mathrm{M}[\mathrm{J}=$ ComputeOpt()

A more clever implementation

M-ComputeOpt()
If $j=0$ then
Return 0
Else if $\mathrm{M}[\mathrm{]}$ is not empty then

Return M[]

Else
$M[j]=\max \left\{v(j)+M\right.$-ComputeOpt $\left.\left(p_{j}\right), M-C o m p u t e O p t(j-1)\right\}$ Return M[]

Endlf

Running time

- In each call of M-ComputeOpt, there is a constant number of operations, besides the recursive calls. So the running time is bounded by the number of recursive calls.
- The two recursive calls only happen when $M[j]$ is empty.
- But when they happens, $M[J]$ is no longer empty.
- So the recursively calls only happen $O(n)$ times.
- The running time of M-ComputeOpt is $\mathrm{O}(n)$, assuming we are given the intervals as sorted by their finishing times, otherwise $\mathrm{O}(n \log n)$, to sort them first.

So our algorithm

- ... solved the main problem by solving subproblems of smaller sizes,
- stored the solutions to the smaller problems in an array,
- recalled them from the array every time they needed to used. (memoization).
- Anything else?

What does M-ComputeOpt(n) actually find?

M-ComputeOpt()
It finds the value of the optimal schedule O .
Is that what we were looking for?
If $j=0$ then
Return 0
Else if $\mathrm{M}[\mathrm{J}]$ is not empty then Return M[j]

Else
 Return M[]

Endlf

Weighted Interval Scheduling

- A set of requests $\{1,2, \ldots, n\}$.
- Each request has a starting time $s(i)$, a finishing time $f(i)$, and a value $\mathrm{v}(\mathrm{i})$.
- Alternative view: Every request is an interval [s(i), $f(i)$] associated with a value $v(i)$.
- Two requests i and j are compatible if their respective intervals do not overlap.
- Goal: Output a schedule which maximises the total value of compatible intervals.

Weighted Interval Scheduling

- A set of requests $\{1,2, \ldots, n\}$.
- Each request has a starting time $s(i)$, a finishing time $f(i)$, and a value $\mathrm{v}(\mathrm{i})$.
- Alternative view: Every request is an interval [s(i), $f(i)$] associated with a value $v(i)$.
- Two requests i and j are compatible if their respective intervals do not overlap.
- Goal: Output a schedule which maximises the total value of compatible intervals.

From values to schedules

In other words, j is in O if and only if

$$
\text { OPT }\left(p_{j}\right)+v(j) \geq \operatorname{OPT}(j-1)
$$

FindSolution()
This can be done in $\mathrm{O}(n)$ time.
If $j=0$, no solution
Else
If $v(j)+M\left(p_{j}\right) \geq M(j-1)$ then
Output j together with FindSolution $\left(\mathrm{p}_{\mathrm{j}}\right)$
Else
Output FindSolution(j-1)
Endlf
End If

Dynamic Programming vs Divide and Conquer

- DP is an optimisation technique and is only applicable to problems with optimal substructure.
- DP splits the problem into parts, finds solutions to the parts and joins them.
- The parts are not significantly smaller and are overlapping.
- In DP, the subproblem dependency can be represented by a DAG.
- DQ is not normally used for optimisation problems.
- DQ splits the problem into parts, finds solutions to the parts and joins them.
- The parts are significantly smaller and do not normally overlap.
- In DQ, the subproblem dependency can be represented by a tree.

