Introduction to Algorithms and Data Structures

Dynamic Programming - Subset Sum and Knapsack

The subset sum problem

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.

We are given a bound W.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.
We are given a bound W.

Goal: Select a subset S of the items such that
$\sum_{i \in N} w_{i} \leq W$ and $\sum_{i \in N} w_{i}$ is maximised.

To be more precise

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.
We are given a bound W.

To be more precise

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.

We are given a bound W.

How are these inputs represented by a computer?

Representation

Representation

Let's say that $w_{3}=5$.

Representation

Let's say that $w_{3}=5$.
How do we "save" 5 in a computer, using only 0 and 1 ?

Representation

Let's say that $w_{3}=5$.
How do we "save" 5 in a computer, using only 0 and 1 ?

Binary representation: $5_{10}=101_{2} \rightarrow 101$

Representation

Let's say that $w_{3}=5$.
How do we "save" 5 in a computer, using only 0 and 1 ?

Binary representation: $5_{10}=101_{2} \rightarrow 101$

Unary representation: $5_{10} \rightarrow 11111$

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i} given in binary representation.

We are given a bound W given in binary representation.

Goal: Select a subset S of the items such that
$\sum_{i \in N} w_{i} \leq W$ and $\sum_{i \in N} w_{i}$ is maximised.

Our input

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.
We are given a bound W.

Goal: Select a subset S of the items such that
$\sum_{i \in N} w_{i} \leq W$ and $\sum_{i \in N} w_{i}$ is maximised.

Greedy Approaches

Greedy Approaches

- Ideas?

Greedy Approaches

- Ideas?
- Sort items in terms of decreasing weight and put them in S one by one.

Greedy Approaches

- Ideas?
- Sort items in terms of decreasing weight and put them in S one by one.
- Sort items in terms of increasing weight and put them in S one by one.

Greedy Approaches

- Sort items in terms of decreasing weight and put them in S one by one.

Greedy Approaches

- Sort items in terms of decreasing weight and put them in S one by one.
- Example where this fails?

Greedy Approaches

- Sort items in terms of decreasing weight and put them in S one by one.
- Example where this fails?
- $W=4, W_{1}=3, W_{2}=2, W_{3}=2$.

Greedy Approaches

- Sort items in terms of increasing weight and put them in S one by one.

Greedy Approaches

- Sort items in terms of increasing weight and put them in S one by one.
- Example where this fails?

Greedy Approaches

- Sort items in terms of increasing weight and put them in S one by one.
- Example where this fails?
- $W=4, W_{1}=1, W_{2}=2, w_{3}=2$.

Dynamic Programming

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_{i} be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1,2, \ldots, i\}$, and let OPT(i) be its value.

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_{i} be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1,2, \ldots, i\}$, and let OPT(i) be its value.
- Hence O is O_{n}, and OPT $=\operatorname{OPT}(n)$

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_{i} be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1,2, \ldots, i\}$, and let OPT(i) be its value.
- Hence O is O_{n}, and OPT $=\operatorname{OPT}(n)$
- Should item n be in the optimal solution O or not?

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_{i} be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1,2, \ldots, i\}$, and let OPT(i) be its value.
- Hence O is O_{n}, and OPT $=\operatorname{OPT}(n)$
- Should item n be in the optimal solution O or not?
- If no, then $\operatorname{OPT}(n-1)=\operatorname{OPT}(n)$

Dynamic Programming

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_{i} be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1,2, \ldots, i\}$, and let OPT(i) be its value.
- Hence O is O_{n}, and OPT $=\operatorname{OPT}(n)$
- Should item n be in the optimal solution O or not?
- If no, then $\operatorname{OPT}(n-1)=\operatorname{OPT}(n)$
- If yes, ?

If n is in O

If n is in O

- What information do we get about the other items?

If n is in O

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.

If n is in O

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?

If n is in 0

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
- There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.

If n is in O

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
- There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.
- The only information that we really get is that we now have weight $W-W_{n}$ left.

What we really need

What we really need

- To find the optimal value OPT(n), we need

What we really need

- To find the optimal value OPT(n), we need
- The optimal value $\operatorname{OPT}(n-1)$ if n is not in O.

What we really need

- To find the optimal value OPT(n), we need
- The optimal value OPT(n-1) if n is not in O.
- The optimal value of the solution on input $\{1,2, \ldots, n-1\}$ and $w=W-w_{n}$.

What we really need

- To find the optimal value OPT(n), we need
- The optimal value OPT(n-1) if n is not in O.
- The optimal value of the solution on input $\{1,2, \ldots, n-1\}$ and $w=W-w_{n}$.
- How many subproblems do we need?

What we really need

- To find the optimal value OPT(n), we need
- The optimal value OPT(n-1) if n is not in O.
- The optimal value of the solution on input $\{1,2, \ldots, n-1\}$ and $w=W-w_{n}$.
- How many subproblems do we need?
- One for each initial set $\{1,2, \ldots, i\}$ of items and each possible value for the remaining weight w .

Subproblems

Subproblems

- Assumptions:

Subproblems

- Assumptions:
- W is an integer.

Subproblems

- Assumptions:
- W is an integer.
- Every w_{i} is an integer.

Subproblems

- Assumptions:
- W is an integer.
- Every w_{i} is an integer.
- We will have one subproblem for each $i=0,1, \ldots, n$ and each integer $0 \leq \mathrm{w} \leq \mathrm{W}$.

Subproblems

- Assumptions:
- W is an integer.
- Every w_{i} is an integer.
- We will have one subproblem for each $i=0,1, \ldots, n$ and each integer $0 \leq \mathrm{w} \leq \mathrm{W}$.
- Let OPT(i,w) be the value of the optimal solution on subset $\{1,2, \ldots, i\}$ and maximum allowed weight w.

Subproblems

Subproblems

- Using this notation, what are we looking for?

Subproblems

- Using this notation, what are we looking for?
- OPT(n,W)

Subproblems

- Using this notation, what are we looking for?
- OPT(n,W)
- Should item n be in the optimal solution O or not?

Subproblems

- Using this notation, what are we looking for?
- OPT(n,W)
- Should item n be in the optimal solution O or not?
- If no, then $\operatorname{OPT}(n, W)=\operatorname{OPT}(n-1, W)$.

Subproblems

- Using this notation, what are we looking for?
- OPT(n,W)
- Should item n be in the optimal solution O or not?
- If no, then $\operatorname{OPT}(n, W)=\operatorname{OPT}(n-1, W)$.
- If yes, then $\operatorname{OPT}(n, W)=w_{n}+\operatorname{OPT}\left(n-1, W-w_{n}\right)$.

Subproblems

Subproblems

Subproblems

Algorithm

Algorithm SubsetSum(n,W)
Array $\mathrm{M}=[0 \ldots n, 0 \ldots \mathrm{~W}]$
Initialise $\mathrm{M}[0, \mathrm{w}]=0$, for each $\mathrm{w}=0,1, \ldots, \mathrm{~W}$
For $\mathrm{i}=1,2, \ldots, n$
For $w=0, \ldots, W$
If $\left(w_{i}>w^{2}\right) \quad{ }^{*}$ If the item does not fit ${ }^{*}$ $M[i, w]=M[i-1, w]$
Else
$M[i, w]=\max \left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}$
Endlf
Return M[n, W]

Two dimensional array

n	0										
$n-1$	0										
...	0										
...	0										
i	0										
i-1	0										
\cdots	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	\ldots	W-Wi			W				W

Two dimensional array

n	0										OPT(n, W)
$n-1$	0										
...	0										
..	0										
i	0										
i-1	0										
\ldots	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	.	W-Wi			W				W

Two dimensional array

n	0										OPT(n,W)
n-1	0										∇
...	0										
...	0										
i	0										
i-1	0										
...	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	\ldots	w-wi			w				W

Two dimensional array

Two dimensional array

n	0										OPT(n,W)
n-1	0									$\mathrm{OPT}(n-1, W)$	
...	0						$\mathrm{OPT}\left(n-2, \mathrm{~W}-\mathrm{w}_{n-2}\right)$				
...	0										OPT(n-2,W)
i	0										
$i-1$	0										
...	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	...	w-wi			w				W

Two dimensional array

n	0										OPT(n,W)
n-1	0									$\mathrm{OPT}(n-1, \mathrm{~W})$	
...	0						$\mathrm{OPT}\left(n-2, \mathrm{~W}-\mathrm{w}_{n-2}\right)$				
...	0										OPT(n-2,W)
i	0										
$i-1$	0										
...	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	...	w-wi			w				W

Two dimensional array

n	0										OPT(n,W)
n-1	0									OPT $(n-1, W)$	
\ldots	0						$\mathrm{OPT}\left(n-2, \mathrm{~W}-\mathrm{w}_{n-2}\right)$				
...	0										OPT($n-2, \mathrm{~W}$)
i	0										
$i-1$	0										
...	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	...	w-wi			w				W

Two dimensional array

Two dimensional array

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

Array $\mathrm{M}=[0 \ldots \mathrm{n}, 0 \ldots \mathrm{~W}]$
Initialise $M[0, w]=0$, for each $w=0,1, \ldots, W$

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For $w=0, \ldots, W$
If $\left(w_{i}>w\right)$ doesn't fit
$M[i, w]=M[i-1, w]$
Else
$M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, w], w_{i}+\mathrm{M}\left[i-1, w-w_{i}\right]\right\}$
Endlf

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For $w=0, \ldots, W$
If $\left(w_{i}>w\right)$ doesn't fit
$M[i, w]=M[i-1, w]$
Else
$M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, w], w_{i}+\mathrm{M}\left[i-1, w-w_{i}\right]\right\}$
Endlf

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0					
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
If \(\left(w_{i}>w\right)\)
\(M[i, w]=M[i-1, w]\)
Else
\(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0					
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

For $w=0, \ldots, W$
If $\left(w_{i}>w\right)$ fits
$M[i, w]=M[i-1, w]$
Else
$\mathrm{M}[i, w]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, w], w_{i}+\mathrm{M}\left[i-1, w-\mathrm{w}_{\mathrm{i}}\right]\right\}$
Endlf

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0	2				
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
If \(\left(w_{i}>w\right)\)
\(M[i, w]=M[i-1, w]\)
Else
\(\mathrm{M}[i, w]=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{M}[i-1, w], w_{i}+\mathrm{M}\left[i-1, w-\mathrm{w}_{\mathrm{i}}\right]\right\}\)
Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
If \(\left(w_{i}>w\right)\)
\(M[i, w]=M[i-1, w]\)
Else
\(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0					
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2				
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2	2			
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2	2	4		
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
    \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For w = \(0, \ldots\), W
If \(\left(w_{i}>w\right)\)
\(M[i, w]=M[i-1, w]\)
Else
\(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For w = \(0, \ldots\), W
If \(\left(w_{i}>w\right)\)
\(M[i, w]=M[i-1, w]\)
Else
\(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3	0	0	2				
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3	0	0	2	3			
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3	0	0	2	3	4		
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3	0	0	2	3	4	5	
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
-	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

3	0	0	2	3	4	5	5
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For \(w=0, \ldots, W\)
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


Example

- $n=3, W=6, w_{1}=w_{2}=2$ and $w_{3}=3$.

| 3 | 0 | 0 | 2 | 3 | 4 | 5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 0 | 2 | 2 | 4 | 4 | 4 |
| 1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

```
For w = \(0, \ldots\), W
    If \(\left(w_{i}>w\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\boldsymbol{\operatorname { m a x }}\left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
```


From values to solutions

- Very similar idea to weighted interval scheduling

Running Time

Running Time

- Similar to weighted interval scheduling.

Running Time

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).

Running Time

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value $M(i, w)$ of the table in $O(1)$ time using the previous values.

Running Time

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value $M(i, w)$ of the table in $O(1)$ time using the previous values.
- What is the running time overall?

Running Time

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value $M(i, w)$ of the table in $O(1)$ time using the previous values.
- What is the running time overall?
- How many entries does the table M have?

Running Time

Running Time

- SubsetSum (n, W) runs in time $O(n W)$.

Running Time

- SubsetSum (n, W) runs in time $O(n W)$.
- Is this a polynomial time algorithm?

Running Time

- SubsetSum $(n, \mathrm{~W})$ runs in time $\mathrm{O}(n \mathrm{~W})$.
- Is this a polynomial time algorithm?
- Not quite, because it depends on W.

Our input

Running Time

- SubsetSum (n, W) runs in time $O(n W)$.
- Is this a polynomial time algorithm?

Running Time

- SubsetSum $(n, \mathrm{~W})$ runs in time $\mathrm{O}(n \mathrm{~W})$.
- Is this a polynomial time algorithm?
- It is pseudopolynomial, as it runs in time polynomial in n and the unary representation of W .

Running Time

- SubsetSum $(n, \mathrm{~W})$ runs in time $\mathrm{O}(n \mathrm{~W})$.
- Is this a polynomial time algorithm?
- It is pseudopolynomial, as it runs in time polynomial in n and the unary representation of W.
- It is fairly efficient, if in the number involved in the input are reasonably small.

Should we be happy?

Should we be happy?

- Pseudopolynomial is good in some cases.

Should we be happy?

- Pseudopolynomial is good in some cases.
- But why not polynomial?

Should we be happy?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?

Should we be happy?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
- Hard enough to justify a reward of 1 million dollars!

SI

If you can solve this math problem you'll get a \$1 million prize - and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
- Hard enough to justify a reward of 1 million dollars!

SI

If you can solve this math problem you'll get a \$1 million prize - and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
- Hard enough to justify a reward of 1 million dollars!
- Subset sum is NP-hard!

SI

If you can solve this math problem you'll get a \$1 million prize - and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
- Hard enough to justify a reward of 1 million dollars!
- Subset sum is NP-hard!
- More about that later on in the course.

The subset sum problem

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.

We are given a bound W.

The subset sum problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i}.
We are given a bound W.

Goal: Select a subset S of the items such that
$\sum_{i \in N} w_{i} \leq W$ and $\sum_{i \in N} w_{i}$ is maximised.

The (0/1) knapsack problem

We are given a set of n items $\{1,2, \ldots, n\}$.

Each item i has a non-negative weight w_{i} and a non-negative value v_{i}.

We are given a bound W.

Goal: Select a subset S of the items such that
$\sum_{i \in N} w_{i} \leq W$ and $\sum_{i \in N} v_{i}$ is maximised.

The knapsack problem

- The subset sum problem is a specific instance of the knapsack problem (why?)

3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n, W)

```
Array \(\mathrm{M}=[0 \ldots n, 0 \ldots \mathrm{~W}]\)
Initialise \(\mathrm{M}[0, w]=0\), for each \(w=0,1, \ldots, \mathrm{w}\)
For \(\mathrm{i}=1,2, \ldots, n\)
    For \(w=0, \ldots, w\)
    If \(\left(w_{i}>w^{2}\right)\)
        \(M[i, w]=M[i-1, w]\)
    Else
        \(M[i, w]=\max \left\{M[i-1, w], w_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
Return M[n, W]
```


3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n, W)

```
Array \(\mathrm{M}=[0 \ldots n, 0 \ldots \mathrm{~W}]\)
Initialise \(\mathrm{M}[0, w]=0\), for each \(w=0,1, \ldots, \mathrm{w}\)
For \(\mathrm{i}=1,2, \ldots, n\)
    For \(w=0, \ldots, w\)
    If \(\left(w_{i}>w^{2}\right)\)
        \(\mathrm{M}[i, \mathrm{w}]=\mathrm{M}[i-1, \mathrm{w}]\)
    Else
        \(M[i, w]=\max \left\{M[i-1, w], W\left[i-1, w-w_{i}\right]\right\}\)
    Endlf
Return M[n, W]
```


Reading

- Kleinberg and Tardos 6.4.
- Roughgarden 16.5.

