Introduction to Algorithms and Data Structures

Dynamic Programming - Subset Sum and Knapsack

We are given a set of n items $\{1, 2, ..., n\}$.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

Goal: Select a subset S of the items such that

$$\sum_{i \in N} w_i \le W \text{ and } \sum_{i \in N} w_i \text{ is maximised.}$$

To be more precise

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

To be more precise

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

How are these inputs represented by a computer?

Let's say that $w_3 = 5$.

Let's say that $w_3 = 5$.

How do we "save" 5 in a computer, using only 0 and 1?

Let's say that $w_3 = 5$.

How do we "save" 5 in a computer, using only 0 and 1?

Binary representation: $5_{10} = 101_2 \rightarrow 101$

Let's say that $w_3 = 5$.

How do we "save" 5 in a computer, using only 0 and 1?

Binary representation: $5_{10} = 101_2 \rightarrow 101$

Unary representation: $5_{10} \rightarrow 11111$

We are given a set of n items $\{1, 2, ..., n\}$.

Each item *i* has a non-negative weight w_i given in binary representation.

We are given a bound W given in binary representation.

Goal: Select a subset S of the items such that

$$\sum_{i \in N} w_i \le W \text{ and } \sum_{i \in N} w_i \text{ is maximised.}$$

Our input

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

Goal: Select a subset S of the items such that

$$\sum_{i \in N} w_i \le W \text{ and } \sum_{i \in N} w_i \text{ is maximised.}$$

• Ideas?

- Ideas?
- Sort items in terms of decreasing weight and put them in Sone by one.

- Ideas?
- Sort items in terms of decreasing weight and put them in Sone by one.
- Sort items in terms of increasing weight and put them in S
 one by one.

 Sort items in terms of decreasing weight and put them in Sone by one.

- Sort items in terms of decreasing weight and put them in Sone by one.
- Example where this fails?

- Sort items in terms of decreasing weight and put them in Sone by one.
- Example where this fails?
 - W = 4, $w_1 = 3$, $w_2 = 2$, $w_3 = 2$.

Sort items in terms of increasing weight and put them in S
one by one.

- Sort items in terms of increasing weight and put them in S
 one by one.
- Example where this fails?

- Sort items in terms of increasing weight and put them in S one by one.
- Example where this fails?
 - W = 4, $w_1 = 1$, $w_2 = 2$, $w_3 = 2$.

 We need to identify the appropriate subproblems to use in order to solve the main problem.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_i be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1, 2, ..., i\}$, and let OPT(i) be its value.

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_i be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1, 2, ..., i\}$, and let OPT(i) be its value.
 - Hence O is O_n, and OPT = OPT(n)

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_i be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1, 2, ..., i\}$, and let OPT(i) be its value.
 - Hence O is O_n , and OPT = OPT(n)
- Should item n be in the optimal solution O or not?

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_i be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1, 2, ..., i\}$, and let OPT(i) be its value.
 - Hence O is O_n , and OPT = OPT(n)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n-1) = OPT(n)

- We need to identify the appropriate subproblems to use in order to solve the main problem.
- Recall the weighted interval scheduling problem. Similar approach.
- Let O_i be the optimal solution to the subset be the optimal solution to the subset sum problem, using a subset of $\{1, 2, ..., i\}$, and let OPT(i) be its value.
 - Hence O is O_n , and OPT = OPT(n)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n-1) = OPT(n)
 - If yes,?

If n is in O

If n is in O

What information do we get about the other items?

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
 - There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.

- What information do we get about the other items?
- In weighted interval scheduling, we could remove all intervals overlapping with n.
- Can we do something similar here?
 - There is no reason to a-priori exclude any remaining item, unless adding it would exceed the weight.
 - The only information that we really get is that we now have weight W - w_n left.

To find the optimal value OPT(n), we need

- To find the optimal value OPT(n), we need
 - The optimal value OPT(n-1) if n is not in O.

- To find the optimal value OPT(n), we need
 - The optimal value OPT(n-1) if n is not in O.
 - The optimal value of the solution on input
 {1, 2, ..., n-1} and w = W w_n.

- To find the optimal value OPT(n), we need
 - The optimal value OPT(n-1) if n is not in O.
 - The optimal value of the solution on input
 {1, 2, ..., n-1} and w = W w_n.
- How many subproblems do we need?

- To find the optimal value OPT(n), we need
 - The optimal value OPT(n-1) if n is not in O.
 - The optimal value of the solution on input
 {1, 2, ..., n-1} and w = W w_n.
- How many subproblems do we need?
 - One for each initial set {1, 2, ..., i} of items and each possible value for the remaining weight w.

• Assumptions:

- Assumptions:
 - W is an integer.

- Assumptions:
 - W is an integer.
 - Every w_i is an integer.

- Assumptions:
 - W is an integer.
 - Every w_i is an integer.
- We will have one subproblem for each *i*=0,1, ..., *n* and each integer 0 ≤ w ≤ W.

- Assumptions:
 - W is an integer.
 - Every w_i is an integer.
- We will have one subproblem for each *i*=0,1, ..., *n* and each integer 0 ≤ w ≤ W.
- Let OPT(i,w) be the value of the optimal solution on subset {1, 2, ..., i} and maximum allowed weight w.

Using this notation, what are we looking for?

- Using this notation, what are we looking for?
 - OPT(*n*, W)

- Using this notation, what are we looking for?
 - OPT(*n*, W)
- Should item n be in the optimal solution O or not?

- Using this notation, what are we looking for?
 - OPT(*n*, W)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n, W) = OPT(n-1, W).

- Using this notation, what are we looking for?
 - OPT(*n*, W)
- Should item n be in the optimal solution O or not?
 - If no, then OPT(n,W) = OPT(n-1,W).
 - If yes, then $OPT(n,W) = w_n + OPT(n-1,W-w_n)$.

Algorithm

```
Algorithm SubsetSum(n, W)
    Array M=[0 ... n, 0 ... W]
     Initialise M[0, w] = 0, for each w = 0, 1, ..., W
     For i = 1, 2, ..., n
        For \mathbf{w} = 0, ..., \mathbf{W}
          If (w_i > w)
                      \* If the item does not fit *\
             M[i, w] = M[i-1, w]
           Else
             M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}
           EndIf
     Return M[n, W]
```

n	0										
n-1											
•••	0										
•••	0										
i	0										
i-1	0										
•••	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		W-Wi			W				W

n	0										OPT(<i>n</i> , W)
	 				: : : : : :	; ; ; ; ; ; ;					
n-1	0				! ! ! !	! ! ! !				1 1 1 1 1 1	
• • •	0										
	0										
i	0										
i-1	0										
•••	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		W-W _i			W				W

n	0										OPT(<i>n</i> , W)
n-1	0										*
•••	0										
•••	0										
i	0										
i-1	0										
•••	0										
2	0										
1	0										
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		W-Wi			W				W

n	0										OPT(n,W)
	 	•				i i i				OPT(<i>n-1</i> , W	
n-1	0										······································
•••	0										
•••	0										
i	0					 					
i-1	0										
•••	0					! ! ! ! ! ! !					
2	0										
1	0	1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1					
0	0	0	0	0	0	0	0	0	0	0	0
	0	1	•••	W-Wi			W				W

n	0					! ! ! ! !					OPT(n,W)
n-1	0									OPT(<i>n</i> -1,V	<u>/</u>)
•••	0						O	PT(<i>n-2</i> ,W	-Wn-2)		
	0										OPT(<i>n</i> -2, W)
i	0										
i-1	0										
• • •	0		! ! ! ! ! !			! ! ! ! ! ! !					
2	0										
1	0					1 1 1 1 1 1 1					
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		w-w _i			W				W

n	0					! ! ! ! !					OPT(n,W)
n-1	0									OPT(n-1,\	<u>//)</u>
•••	0						O	PT(<i>n-2</i> ,W	-W _{n-2})		
• • •	0										OPT(<i>n-2</i> , W)
i	0								+		
i-1	0										
• • •	0					! ! ! ! ! !					
2	0										
1	0					1 1 1 1 1 1 1					
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		W-Wi			W				W

n	0					! ! ! ! !					OPT(n,W)
n-1	0									OPT(<i>n</i> -1,	<u>v)</u>
•••	0						C	PT(<i>n-2</i> ,W	-W _{n-2})		
• • •	0								 		OPT(<i>n</i> -2, W)
i	0								*		
i-1	0								↓		
• • •	0					! ! ! ! ! ! !					
2	0										
1	0					1 1 1 1 1 1 1					
0	0	0	0	0	0	0	0	0	0	0	0
	0	1		W-Wi			W				W

Example

• n=3, W=6, $w_1 = w_2 = 2$ and $w_3 = 3$.

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

Array $M=[0 \dots n, 0 \dots W]$ Initialise M[0, w] = 0, for each $w = 0, 1, \dots, W$

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

3							
2							
1							
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w=0, ..., W

If (w_i>w) doesn't fit M[i, w]=M[i-1, w]
Else M[i, w]=max\{M[i-1, w], w_i+M[i-1, w-w_i]\}
EndIf
```

3							
 2							
 1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2							
1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w=0 , ... , W If (w_i>w) doesn't fit M[i, w]=M[i-1, w] Else M[i, w]=max\{M[i-1, w] , w_i+M[i-1, w-w_i]\} EndIf
```

3							
2							
1	0	0					
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

3							
2							
1	0	0					
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w=0 , ... , W If (w_i>w) fits M[i, w]=M[i-1, w] Else M[i, w]=max\{M[i-1, w] \ , w_i+M[i-1, w-w_i]\} EndIf
```


3							
 2							
 1	0	0	2				
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2							
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0					
 1	0	0	2	2	2	2	2
 0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2				
 1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
 	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2	2			
 1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2	2	4		
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2	2	4	4	4
 1	0	0	2	2	2	2	2
 0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2	2	4	4	4
 1	0	0	2	2	2	2	2
 0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3							
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3	0	0	2				
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

3	0	0	2	3			
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3	0	0	2	3	4		
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3	0	0	2	3	4	5	
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

3	0	0	2	3	4	5	5
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

• n=3, W=6, $w_1 = w_2 = 2$ and $w_3 = 3$.

Optimal value

3	0	0	2	3	4	5	5
2	0	0	2	2	4	4	4
1	0	0	2	2	2	2	2
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

```
For w = 0 , ... , W If (w_i > w) M[i, w] = M[i-1, w] Else M[i, w] = max\{M[i-1, w] , w_i + M[i-1, w-w_i]\} EndIf
```

From values to solutions

Very similar idea to weighted interval scheduling

Similar to weighted interval scheduling.

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(i, w) of the table in O(1) time using the previous values.

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(i, w) of the table in O(1) time using the previous values.
- What is the running time overall?

- Similar to weighted interval scheduling.
- We are building up a table M of solutions (instead of an array).
- We compute each value M(i, w) of the table in O(1) time using the previous values.
- What is the running time overall?
 - How many entries does the table M have?

• SubsetSum(n,W) runs in time O(nW).

- SubsetSum(n,W) runs in time O(nW).
- Is this a polynomial time algorithm?

- SubsetSum(n,W) runs in time O(nW).
- Is this a polynomial time algorithm?
 - Not quite, because it depends on W.

Our input

- SubsetSum(n,W) runs in time O(nW).
- Is this a polynomial time algorithm?

- SubsetSum(n,W) runs in time O(nW).
- Is this a polynomial time algorithm?
 - It is pseudopolynomial, as it runs in time polynomial in n and the unary representation of W.

- SubsetSum(n,W) runs in time O(nW).
- Is this a polynomial time algorithm?
 - It is pseudopolynomial, as it runs in time polynomial in n and the unary representation of W.
 - It is fairly efficient, if in the number involved in the input are reasonably small.

Pseudopolynomial is good in some cases.

- Pseudopolynomial is good in some cases.
- But why not polynomial?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!

BUSINESS INSIDER

S

If you can solve this math problem you'll get a \$1 million prize — and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!

BUSINESS INSIDER

S

If you can solve this math problem you'll get a \$1 million prize — and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!
 - Subset sum is NP-hard!

BUSINESS INSIDER

S

If you can solve this math problem you'll get a \$1 million prize — and change internet security as we know it

- Pseudopolynomial is good in some cases.
- But why not polynomial?
- How hard is it to design a polynomial time algorithm for subset sum?
 - Hard enough to justify a reward of 1 million dollars!
 - Subset sum is NP-hard!
 - More about that later on in the course.

We are given a set of n items $\{1, 2, ..., n\}$.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight wi.

We are given a bound W.

Goal: Select a subset S of the items such that

$$\sum_{i \in N} w_i \le W \text{ and } \sum_{i \in N} w_i \text{ is maximised.}$$

The (0/1) knapsack problem

We are given a set of n items $\{1, 2, ..., n\}$.

Each item i has a non-negative weight w_i and a non-negative value v_i .

We are given a bound W.

Goal: Select a subset S of the items such that

$$\sum_{i \in N} w_i \le W \text{ and } \sum_{i \in N} v_i \text{ is maximised.}$$

The knapsack problem

 The subset sum problem is a specific instance of the knapsack problem (why?)

3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

```
Algorithm SubsetSum(n, W)
    Array M = [0 ... n, 0 ... W]
     Initialise M[0, w] = 0, for each w = 0, 1, ..., W
     For i = 1, 2, ..., n
        For \mathbf{w} = 0, ..., \mathbf{W}
          If (w_i > w)
             M[i, w] = M[i-1, w]
          Else
             M[i, w] = max\{M[i-1, w], w_i + M[i-1, w-w_i]\}
           EndIf
     Return M[n, W]
```

3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

```
Algorithm SubsetSum(n, W)
    Array M = [0 ... n, 0 ... W]
     Initialise M[0, w] = 0, for each w = 0, 1, ..., W
    For i = 1, 2, ..., n
        For \mathbf{w} = 0, ..., \mathbf{W}
          If (w_i > w)
             M[i, w] = M[i-1, w]
          Else
             M[i, w] = max\{M[i-1, w], M[i-1, w-w_i]\}
          EndIf
     Return M[n, W]
```

Reading

- Kleinberg and Tardos 6.4.
- Roughgarden 16.5.