
Introduction to Algorithms and 
Data Structures

Dynamic Programming - The Bellman-Ford Algorithm for 
Shortest Paths



Shortest Paths in Graphs

(Lecture 17)

• Input: A directed graph , and a designated 
node  in . We also assume that every node  in  is 
reachable from . We are also given a length  for 
every edge  in .


• Output: For every node  in , a shortest path ~  from  
to .  

G = (V, E)
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(today)

• The difference is that the edge “lengths” can be positive 
or negative. In this context they are better interpreted as 
costs, and denoted by  or .ce cuv

• Motivation: e.g., Financial Networks 
 
positive costs (costs of transactions) 
negative costs (profits of transactions)



Shortest Paths in Graphs

(today)

• Input: A directed graph , and designated nodes 
 in . We also assume that every node  in  is reachable 

from . We are also given a cost  for every edge  in 
.


• Output: A shortest path ~  from  to . In other words, a 
path  that minimises  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Negative Cycles
• Can we find a shortest path in the following graph?
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Negative Cycles
• Can we find a shortest path in the following graph?

s t
2 1 1 1 2
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1 Arbitrary negative cost!



Shortest Paths in Graphs
• Input: A directed graph , and designated nodes 

 in . We also assume that every node  in  is reachable 
from , and that the graph does not have any negative cycles. 
We are also given a cost  for every edge  in .


• Output: A shortest path ~  from  to . In other words, a 
path  that minimises  

G = (V, E)
s, t V u V
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Why not Dijkstra?



Dijkstra’s Algorithm

• For every node   , we determine the shortest path 
that can be constructed by traveling along a path ~  for  

  , followed by ( , ).  


• In other words, we choose node     such that 
 




• Add  to  and define .

v ∈ V−S
s u

u ∈ S u v

v ∈ V−S

d′￼(v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′￼(v)



Why not Dijkstra?
• Which node would Dijkstra add in the following graph? 
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Maybe modified Dijkstra?

• Idea: “Get rid” of the negative costs by adding a large 
number  to all the edge costs. ℳ
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The shortest path changes!



A dynamic programming 
approach

• The algorithm that we will present next was developed by 
Bellman (1958) and Ford (1956).


• Note that Dijkstra’s algorithm was published in 1959. 
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Why dynamic programming?

Let’s look at a shortest path ~  from  to .s t s t

s

u

t

This consists of a shortest path ~  from  to , and a 
shortest path ~  from  to  (why?).

s u s t
u t u t

Optimal substructure!



Simple Observation
• Observation: If a graph does not have any negative 

cycles, then there is a shortest path ~  from  to  that is 
simple, i.e., it does not repeat any nodes.   
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Simple Observation
• Observation: If a graph does not have any negative 

cycles, then there is a shortest path ~  from  to  that is 
simple, i.e., it does not repeat any nodes.   
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Simple Observation

• Observation: If a graph does not have any negative 
cycles, then there is a shortest path ~  from  to  that is 
simple, i.e., it does not repeat any nodes.  

s t s t

• Corollary: The length of any shortest path ~  from  to  
has at most  edges.

s t s t
n − 1
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Weighted Interval Scheduling: OPT(i) was the value of the optimal 
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Setting up our subproblems
• Previously:  

 
Subset Sum: OPT(i,w) was the value of the optimal solution on the first 
i items and weight w. 
 
Weighted Interval Scheduling: OPT(i) was the value of the optimal 
solution on the first i intervals.

• We could try something similar for the “first” i nodes. 

• Could be made to work, but it seems complicated.

• Instead, we will use the number of edges, rather than the set of 
nodes or edges. 
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Setting up our subproblems

• Let OPT(i, ) denote the minimum cost of a path ~  from 
node  to  that uses at most i edges. 

v v t
v t

• We could also use OPT(i, ) to denote the minimum cost of 
a path ~  from  to node  that uses at most i edges. 

v
s v s v

• This looks more like Dijkstra, but the former one is used 
in KT, because it fits better some of the other 
applications presented in the book. 
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Setting up our subproblems

Let OPT(i, ) denote the minimum cost of a path ~  from 
node  to  that uses at most i edges. 
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that uses at most i edges?

OPT(i, )v = ∞



Setting up our subproblems

• Let OPT(i, ) denote the minimum cost of a path ~  from 
node  to  that uses at most i edges.

v v t
v t



Setting up our subproblems

• Let OPT(i, ) denote the minimum cost of a path ~  from 
node  to  that uses at most i edges.

v v t
v t

• What is then the (global) solution to our problem? 



Setting up our subproblems

• Let OPT(i, ) denote the minimum cost of a path ~  from 
node  to  that uses at most i edges.

v v t
v t

• What is then the (global) solution to our problem? 

• OPT(n-1, )s



Simple Observation

• Observation: If a graph does not have any negative 
cycles, then there is a shortest path ~  from  to  that is 
simple, i.e., it does not repeat any nodes.  


• Corollary: The length of any shortest path ~  from  to  
has at most  edges.

s t s t

s t s t
n − 1
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with cost OPT(i, ).
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The recurrence relation

Let  a minimum-cost path using at most i edges from  to  
with cost OPT(i, ).
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Case 2:  uses exactly i edges. Let  be the first edge of . Then OPT(i, ) 
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The recurrence relation

Let  a minimum-cost path using at most i edges from  to  with cost OPT(i, ).P v t v

Case 2:  uses exactly i edges. Let  be the first edge of . Then OPT(i, ) 
= OPT(i-1, ).

P (v, w*) P v
w*

We don’t know .w*

Take  (  + OPT(i-1, ))min
w∈N(v)

cvw w
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The recurrence relation
Let  a minimum-cost path using at most i edges from  to  with 
cost OPT(i, ).

P v t
v

Case 1:  uses at most i-1 edges. Then OPT(i, ) = OPT(i-1, ).P v v

Case 2:  uses exactly i edges.  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Let  a minimum-cost path using at most i edges from  to  with 
cost OPT(i, ).
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The Bellman-Ford Algorithm
ShortestPath ( ,  ). 

       \* Let  *\ 
        Define 2-D Array ,  
        Initialise , , and ,  for all other   . 
 
        For  
               For    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        Return (n-1, )               
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v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)
n − 1

n
O(n)

Overall: O (n3)
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(i, ) = (i-1, ) ,  (  + (i-1, ))           M v min{M v min
w∈N(v)

cvw M w }

v t

w1

wk

…

Suffices to only check   
such that .

w
(v, w) ∈ E
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Recall that  be the set of nodes  for which there is an 
edge , and let be their number. 

N(v) w
(v, w) nv = |N(v) |

(i, ) = (i-1, ) ,  (  + (i-1, ))M v min{M v min
w∈N(v)

cvw M w }

We have to compute an entry for every  and every index 

, so in total we need time            

v ∈ V

i ∈ [0,n − 1] O (n∑
v∈V

nv)

O(nv)
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Improved Analysis
Let  be the set of nodes  for which there is an edge , 
and let be their number. 


(i, ) = (i-1, ) ,  (  + (i-1, )) 


We have to compute an entry for every  and every index 

, so in total we need time            

N(v) w (v, w)
nv = |N(v) |

M v min{M v min
w∈N(v)

cvw M w }

v ∈ V

i ∈ [0,n − 1] O (n∑
v∈V

nv)

O(nv)

Overall: O(nm)
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Improved Memory 
Implementation

• We will store only  for every node   rather than  
i,  for all i and all  .

M′￼[v] v ∈ V
M′￼[ v] v ∈ V

• This will be the length of the shortest path ~  that we have found so 
far.

v t

• We still iterate over all i and all  as before, but i is only a counter.v

• We use the following recurrence relation: 
 

[ ] = [ ] ,  (  + [ ])M v min{M v min
w∈N(v)

cvw M w }

• That works, however more work is needed to recover the shortest paths!
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Shortest Paths in Graphs
• Input: A directed graph , and designated nodes 

 in . We also assume that every node  in  is reachable 
from , and that the graph does not have any negative cycles. 
We are also given a cost  for every edge  in .


• Output: A shortest path ~  from  to . In other words, a 
path  that minimises  

G = (V, E)
s, t V u V

s
ce ∈ ℝ e E

s t s t
P ∑

(u,v)∈P

cuv

What if the graph has negative cycles? Can we at least detect that?



Detecting Negative Cycles

• Can be done in time .


• It is in fact usually included as a part of the Bellman-Ford 
algorithm.


• We will not cover this here, see KT 6.10 for the details if 
you are interested.  

O(mn)



Reading and References

• Kleinberg and Tardos 6.8.


• CLRS 22.1.


• Roughgarden 18.1, 18.2.


• The Bellman-Ford visualiser:  
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-
bellman-ford/index_en.html

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

