
Introduction to Algorithms and
Data Structures

Dynamic Programming - The Bellman-Ford Algorithm for
Shortest Paths

Shortest Paths in Graphs

(Lecture 17)

• Input: A directed graph , and a designated
node in . We also assume that every node in is
reachable from . We are also given a length for
every edge in .

• Output: For every node in , a shortest path ~ from
to .  

G = (V, E)
s V u V

s ℓe > 0
e E

u V s u s
u

Shortest Paths in Graphs

(today)

• Input: A directed graph , and designated
nodes in . We also assume that every node in is
reachable from . We are also given a cost for
every edge in .

• Output: A shortest path ~ from to .  

G = (V, E)
s, t V u V

s ce ∈ ℝ
e E

s t s t

Shortest Paths in Graphs

(today)

Shortest Paths in Graphs

(today)

• The difference is that the edge “lengths” can be positive
or negative. In this context they are better interpreted as
costs, and denoted by or .ce cuv

Shortest Paths in Graphs

(today)

• The difference is that the edge “lengths” can be positive
or negative. In this context they are better interpreted as
costs, and denoted by or .ce cuv

• Motivation: e.g., Financial Networks 
 
positive costs (costs of transactions) 
negative costs (profits of transactions)

Shortest Paths in Graphs

(today)

• Input: A directed graph , and designated nodes
 in . We also assume that every node in is reachable

from . We are also given a cost for every edge in
.

• Output: A shortest path ~ from to . In other words, a
path that minimises  

G = (V, E)
s, t V u V

s ce ∈ ℝ e
E

s t s t
P ∑

(u,v)∈P

cuv

Negative Cycles
• Can we find a shortest path in the following graph?

s t
2 1 1 1 2

-1-2

1

Negative Cycles
• Can we find a shortest path in the following graph?

s t
2 1 1 1 2

-1-2

1 Arbitrary negative cost!

Shortest Paths in Graphs
• Input: A directed graph , and designated nodes

 in . We also assume that every node in is reachable
from , and that the graph does not have any negative cycles.
We are also given a cost for every edge in .

• Output: A shortest path ~ from to . In other words, a
path that minimises  

G = (V, E)
s, t V u V

s
ce ∈ ℝ e E

s t s t
P ∑

(u,v)∈P

cuv

Why not Dijkstra?

Dijkstra’s Algorithm

• For every node , we determine the shortest path
that can be constructed by traveling along a path ~ for  

 , followed by (,).

• In other words, we choose node such that 
 

• Add to and define .

v ∈ V−S
s u

u ∈ S u v

v ∈ V−S

d′￼(v) = min
e=(u,v):u∈S

d(u) + ℓe

v S d(v) = d′￼(v)

Why not Dijkstra?
• Which node would Dijkstra add in the following graph?

s

t

u

v

2

1

3

-6

Why not Dijkstra?
• Which node would Dijkstra add in the following graph?

s

t

u

v

2

1

3

-6

Maybe modified Dijkstra?

• Idea: “Get rid” of the negative costs by adding a large
number to all the edge costs. ℳ

Maybe modified Dijkstra?

• Idea: “Get rid” of the negative costs by adding a large
number to all the edge costs. ℳ

s t

u

v

2

3

2

-3
w

3

Maybe modified Dijkstra?

• Idea: “Get rid” of the negative costs by adding a large
number to all the edge costs. ℳ

s t

u

v

2

3

2

-3
w

3

The shortest path changes!

A dynamic programming
approach

• The algorithm that we will present next was developed by
Bellman (1958) and Ford (1956).

• Note that Dijkstra’s algorithm was published in 1959.

Why dynamic programming?

Let’s look at a shortest path ~ from to .s t s t

Why dynamic programming?

Let’s look at a shortest path ~ from to .s t s t

s

u

t

Why dynamic programming?

Let’s look at a shortest path ~ from to .s t s t

s

u

t

This consists of a shortest path ~ from to , and a
shortest path ~ from to (why?).

s u s t
u t u t

Why dynamic programming?

Let’s look at a shortest path ~ from to .s t s t

s

u

t

This consists of a shortest path ~ from to , and a
shortest path ~ from to (why?).

s u s t
u t u t

Why dynamic programming?

Let’s look at a shortest path ~ from to .s t s t

s

u

t

This consists of a shortest path ~ from to , and a
shortest path ~ from to (why?).

s u s t
u t u t

Optimal substructure!

Simple Observation
• Observation: If a graph does not have any negative

cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

Simple Observation
• Observation: If a graph does not have any negative

cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

s t

Simple Observation
• Observation: If a graph does not have any negative

cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

s t

Simple Observation
• Observation: If a graph does not have any negative

cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

s t

Adding the cycle cannot make the path shorter!

Simple Observation

• Observation: If a graph does not have any negative
cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

Simple Observation

• Observation: If a graph does not have any negative
cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

s t s t

• Corollary: The length of any shortest path ~ from to
has at most edges.

s t s t
n − 1

Setting up our subproblems

Setting up our subproblems
• Previously:  

 
Subset Sum: OPT(i,w) was the value of the optimal solution on the first
i items and weight w. 
 
Weighted Interval Scheduling: OPT(i) was the value of the optimal
solution on the first i intervals.

Setting up our subproblems
• Previously:  

 
Subset Sum: OPT(i,w) was the value of the optimal solution on the first
i items and weight w. 
 
Weighted Interval Scheduling: OPT(i) was the value of the optimal
solution on the first i intervals.

• We could try something similar for the “first” i nodes.

Setting up our subproblems
• Previously:  

 
Subset Sum: OPT(i,w) was the value of the optimal solution on the first
i items and weight w. 
 
Weighted Interval Scheduling: OPT(i) was the value of the optimal
solution on the first i intervals.

• We could try something similar for the “first” i nodes.

• Could be made to work, but it seems complicated.

Setting up our subproblems
• Previously:  

 
Subset Sum: OPT(i,w) was the value of the optimal solution on the first
i items and weight w. 
 
Weighted Interval Scheduling: OPT(i) was the value of the optimal
solution on the first i intervals.

• We could try something similar for the “first” i nodes.

• Could be made to work, but it seems complicated.

• Instead, we will use the number of edges, rather than the set of
nodes or edges.

Setting up our subproblems

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

• We could also use OPT(i,) to denote the minimum cost of
a path ~ from to node that uses at most i edges.

v
s v s v

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

• We could also use OPT(i,) to denote the minimum cost of
a path ~ from to node that uses at most i edges.

v
s v s v

• This looks more like Dijkstra, but the former one is used
in KT, because it fits better some of the other
applications presented in the book.

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
uses i edges

uses i edges
cost = 9

cost = 10

OPT(i,)v
uses i-1 edges

cost = 11

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
uses i edges

uses i edges
cost = 9

cost = 10

OPT(i,)v

uses i+1 edges

uses i-1 edges
cost = 11

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
uses i edges

uses i edges
cost = 9

cost = 10

OPT(i,)v

uses i+1 edges
OPT(i+1,)v

uses i-1 edges
cost = 11

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
uses i edges

uses i edges
cost = 9

cost = 10

OPT(i,)v

uses i+1 edges
OPT(i+1,)v

uses i-1 edges
cost = 11

cost = 7

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
What if there is no path  

that uses at most i edges?

Setting up our subproblems

Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

s

v

t
What if there is no path  

that uses at most i edges?

OPT(i,)v = ∞

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

• What is then the (global) solution to our problem?

Setting up our subproblems

• Let OPT(i,) denote the minimum cost of a path ~ from
node to that uses at most i edges.

v v t
v t

• What is then the (global) solution to our problem?

• OPT(n-1,)s

Simple Observation

• Observation: If a graph does not have any negative
cycles, then there is a shortest path ~ from to that is
simple, i.e., it does not repeat any nodes.

• Corollary: The length of any shortest path ~ from to
has at most edges.

s t s t

s t s t
n − 1

The recurrence relation
v t

The recurrence relation

Let a minimum-cost path using at most i edges from to
with cost OPT(i,).

P v t
v

v t

The recurrence relation

Let a minimum-cost path using at most i edges from to
with cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

v t

The recurrence relation

Let a minimum-cost path using at most i edges from to
with cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

Case 2: uses exactly i edges. Let be the first edge
of . Then OPT(i,) = + OPT(i-1,).

P (v, w*)
P v cvw* w*

v t

The recurrence relation

Let a minimum-cost path using at most i edges from to
with cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

Case 2: uses exactly i edges. Let be the first edge
of . Then OPT(i,) = + OPT(i-1,).

P (v, w*)
P v cvw* w*

v t

w*

The recurrence relation

Let a minimum-cost path using at most i edges from to with cost OPT(i,).P v t v

Case 2: uses exactly i edges. Let be the first edge of . Then OPT(i,)
= OPT(i-1,).

P (v, w*) P v
w*

v t

w*

The recurrence relation

Let a minimum-cost path using at most i edges from to with cost OPT(i,).P v t v

Case 2: uses exactly i edges. Let be the first edge of . Then OPT(i,)
= OPT(i-1,).

P (v, w*) P v
w*

We don’t know .w*

v t

w*

The recurrence relation

Let a minimum-cost path using at most i edges from to with cost OPT(i,).P v t v

Case 2: uses exactly i edges. Let be the first edge of . Then OPT(i,)
= OPT(i-1,).

P (v, w*) P v
w*

We don’t know .w*

Take (+ OPT(i-1,))min
w∈N(v)

cvw w

v t

w*

The recurrence relation

Let a minimum-cost path using at most i edges from to with cost OPT(i,).P v t v

Case 2: uses exactly i edges. Let be the first edge of . Then OPT(i,)
= OPT(i-1,).

P (v, w*) P v
w*

We don’t know .w*

Take (+ OPT(i-1,))min
w∈N(v)

cvw w

v t

w1

wk

…

The recurrence relation
Let a minimum-cost path using at most i edges from to with
cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

Case 2: uses exactly i edges.  
Then OPT(i,) = (+ OPT(i-1,))

P
v min

w∈N(v)
cvw w

The recurrence relation
Let a minimum-cost path using at most i edges from to with
cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

Case 2: uses exactly i edges.  
Then OPT(i,) = (+ OPT(i-1,))

P
v min

w∈N(v)
cvw w

Recurrence: OPT(i,) = OPT(i-1,) , (+ OPT(i-1,))v min{ v min
w∈N(v)

cvw w }

The recurrence relation
Let a minimum-cost path using at most i edges from to with
cost OPT(i,).

P v t
v

Case 1: uses at most i-1 edges. Then OPT(i,) = OPT(i-1,).P v v

Case 2: uses exactly i edges.  
Then OPT(i,) = (+ OPT(i-1,))

P
v min

w∈N(v)
cvw w

Recurrence: OPT(i,) = OPT(i-1,) , (+ OPT(i-1,))v min{ v min
w∈N(v)

cvw w }

The Bellman-Ford Algorithm
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

0 1 2 3 4 5
t
a
b
c
d
e

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

0 1 2 3 4 5
t
a
b
c
d
e

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,) = (0,) ,
 (+ (0,))  

M t min{M t
min

w∈N(t)
0 M w }

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,a) = (0,a) ,
 (+ (0,))  

M min{M
min

w∈N(a)
caw M w }

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,a) = (0,a) ,
 (+ (0,))  

M min{M
min

w∈N(a)
caw M w }

(1,a) = + (0,)  M cat M t

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a -3
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a -3
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a -3
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,b) = (0,b) ,
 (+ (0,))  

M min{M
min

w∈N(b)
cbw M w }

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a -3
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,b) = (0,b) ,
 (+ (0,))  

M min{M
min

w∈N(b)
cbw M w }

(1,b) =  M ∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0
a -3
b
c
d
e

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(1,b) = (0,b) ,
 (+ (0,))  

M min{M
min

w∈N(b)
cbw M w }

(1,b) =  M ∞

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(4,a) = (3,a) ,
 (+ (3,w))  

M min{M
min

w∈N(a)
caw M }

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(4,a) = (3,a) ,
 (+ (3,w))  

M min{M
min

w∈N(a)
caw M }

 + (3,b) = -6cab M

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

(4,a) = (3,a) ,
 (+ (3,w))  

M min{M
min

w∈N(a)
caw M }

 + (3,b) = -6cab M

∞

 + (3,t) = -3cat M

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

(4,b) = (3,b) ,
 (+ (3,w))  

M min{M
min

w∈N(b)
cbw M }

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

(4,b) = (3,b) ,
 (+ (3,w))  

M min{M
min

w∈N(b)
cbw M }

 + (3,d) = -1 + 3cbd M

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

(4,b) = (3,b) ,
 (+ (3,w))  

M min{M
min

w∈N(b)
cbw M }

 + (3,d) = -1 + 3cbd M
 + (3,e) = -2 + 0 cbe M

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0
a -3 -3 -4 -6
b 0 -2 -2
c 3 3 3
d 4 3 3
e 2 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0 0
a -3 -3 -4 -6 -6
b 0 -2 -2 -2
c 3 3 3 3 3
d 4 3 3 2 0
e 2 0 0 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0 0
a -3 -3 -4 -6 -6
b 0 -2 -2 -2
c 3 3 3 3 3
d 4 3 3 2 0
e 2 0 0 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

We can find the actual paths 
via tracing backwards:

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0 0
a -3 -3 -4 -6 -6
b 0 -2 -2 -2
c 3 3 3 3 3
d 4 3 3 2 0
e 2 0 0 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

We can find the actual paths 
via tracing backwards:

(5,d) = (4,d) ,

 (+ (4,w))  

M min{M

min
w∈N(d)

cdw M }

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0 0
a -3 -3 -4 -6 -6
b 0 -2 -2 -2
c 3 3 3 3 3
d 4 3 3 2 0
e 2 0 0 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

We can find the actual paths 
via tracing backwards:

(5,d) = (4,d) ,

 (+ (4,w))  

M min{M

min
w∈N(d)

cdw M }

So the first edge must be .(d, a)

Example
a

b

c

d

e

t

-3
6

3

4

2

-1

-4

8
-3

-2

0 1 2 3 4 5
t 0 0 0 0 0 0
a -3 -3 -4 -6 -6
b 0 -2 -2 -2
c 3 3 3 3 3
d 4 3 3 2 0
e 2 0 0 0 0

∞
∞
∞
∞
∞

ShortestPath (,). 
 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

∞

We can find the actual paths 
via tracing backwards:

(5,d) = (4,d) ,

 (+ (4,w))  

M min{M

min
w∈N(d)

cdw M }

So the first edge must be .(d, a)
Next we consider , etc.M(4, a)

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1)

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)
n − 1

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)
n − 1

n

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)
n − 1

n
O(n)

Running Time
ShortestPath (,). 

 * Let *\ 
 Define 2-D Array ,  
 Initialise , , and , for all other . 
 
 For  
 For  
 (i,) = (i-1,) , (+ (i-1,))  

 Return (n-1,)

G, s t
n = |V |

M[0,⋯, n − 1 s, v1, v2, …, t]
M[0 t] = 0 M[0 v] = ∞ v ∈ V

i = 1,2,…, n − 1
v ∈ V
M v min{M v min

w∈N(v)
cvw M w }

M s

O(1) O(n)
n − 1

n
O(n)

Overall: O (n3)

Improved Analysis

(i,) = (i-1,) , (+ (i-1,)) M v min{M v min
w∈N(v)

cvw M w }

v t

w1

wk

…

Improved Analysis

(i,) = (i-1,) , (+ (i-1,)) M v min{M v min
w∈N(v)

cvw M w }

v t

w1

wk

…

Suffices to only check  
such that .

w
(v, w) ∈ E

Improved Analysis

Improved Analysis
Recall that be the set of nodes for which there is an
edge , and let be their number.

N(v) w
(v, w) nv = |N(v) |

Improved Analysis
Recall that be the set of nodes for which there is an
edge , and let be their number.

N(v) w
(v, w) nv = |N(v) |

(i,) = (i-1,) , (+ (i-1,))M v min{M v min
w∈N(v)

cvw M w } O(nv)

Improved Analysis
Recall that be the set of nodes for which there is an
edge , and let be their number.

N(v) w
(v, w) nv = |N(v) |

(i,) = (i-1,) , (+ (i-1,))M v min{M v min
w∈N(v)

cvw M w }

We have to compute an entry for every and every index

, so in total we need time

v ∈ V

i ∈ [0,n − 1] O (n∑
v∈V

nv)

O(nv)

Improved Analysis

How large is ? ∑
v∈V

nv
v

w1

wk

…

Improved Analysis

How large is ? ∑
v∈V

nv

Each node contributes exactly
as many terms as the number of
its outgoing edges .

v

(v, w)

v

w1

wk

…

Improved Analysis

How large is ? ∑
v∈V

nv

Each node contributes exactly
as many terms as the number of
its outgoing edges .

v

(v, w)

 = ∑
v∈V

nv m

v

w1

wk

…

Improved Analysis
Let be the set of nodes for which there is an edge ,
and let be their number.

(i,) = (i-1,) , (+ (i-1,))

We have to compute an entry for every and every index

, so in total we need time

N(v) w (v, w)
nv = |N(v) |

M v min{M v min
w∈N(v)

cvw M w }

v ∈ V

i ∈ [0,n − 1] O (n∑
v∈V

nv)

O(nv)

Improved Analysis
Let be the set of nodes for which there is an edge ,
and let be their number.

(i,) = (i-1,) , (+ (i-1,))

We have to compute an entry for every and every index

, so in total we need time

N(v) w (v, w)
nv = |N(v) |

M v min{M v min
w∈N(v)

cvw M w }

v ∈ V

i ∈ [0,n − 1] O (n∑
v∈V

nv)

O(nv)

Overall: O(nm)

Improved Memory
Implementation

Improved Memory
Implementation

• We need to store the 2D array in memory, which takes space . M Θ(n2)

Improved Memory
Implementation

• We need to store the 2D array in memory, which takes space . M Θ(n2)

• Memory usage is a common problem with many dynamic programming
algorithms.

Improved Memory
Implementation

• We need to store the 2D array in memory, which takes space . M Θ(n2)

• Memory usage is a common problem with many dynamic programming
algorithms.

• Here, we can instead use an 1D array of space .M′￼ O(n)

Improved Memory
Implementation

• We need to store the 2D array in memory, which takes space . M Θ(n2)

• Memory usage is a common problem with many dynamic programming
algorithms.

• Here, we can instead use an 1D array of space .M′￼ O(n)

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

Improved Memory
Implementation

• We need to store the 2D array in memory, which takes space . M Θ(n2)

• Memory usage is a common problem with many dynamic programming
algorithms.

• Here, we can instead use an 1D array of space .M′￼ O(n)

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

• This will be the length of the shortest path ~ that we have found so
far.

v t

Improved Memory
Implementation

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

• This will be the length of the shortest path ~ that we have found so
far.

v t

Improved Memory
Implementation

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

• This will be the length of the shortest path ~ that we have found so
far.

v t

• We still iterate over all i and all as before, but i is only a counter.v

Improved Memory
Implementation

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

• This will be the length of the shortest path ~ that we have found so
far.

v t

• We still iterate over all i and all as before, but i is only a counter.v

• We use the following recurrence relation: 
 

[] = [] , (+ [])M v min{M v min
w∈N(v)

cvw M w }

Improved Memory
Implementation

• We will store only for every node rather than  
i, for all i and all .

M′￼[v] v ∈ V
M′￼[v] v ∈ V

• This will be the length of the shortest path ~ that we have found so
far.

v t

• We still iterate over all i and all as before, but i is only a counter.v

• We use the following recurrence relation: 
 

[] = [] , (+ [])M v min{M v min
w∈N(v)

cvw M w }

• That works, however more work is needed to recover the shortest paths!

Shortest Paths in Graphs
• Input: A directed graph , and designated nodes

 in . We also assume that every node in is reachable
from , and that the graph does not have any negative cycles.
We are also given a cost for every edge in .

• Output: A shortest path ~ from to . In other words, a
path that minimises  

G = (V, E)
s, t V u V

s
ce ∈ ℝ e E

s t s t
P ∑

(u,v)∈P

cuv

Shortest Paths in Graphs
• Input: A directed graph , and designated nodes

 in . We also assume that every node in is reachable
from , and that the graph does not have any negative cycles.
We are also given a cost for every edge in .

• Output: A shortest path ~ from to . In other words, a
path that minimises  

G = (V, E)
s, t V u V

s
ce ∈ ℝ e E

s t s t
P ∑

(u,v)∈P

cuv

What if the graph has negative cycles? Can we at least detect that?

Detecting Negative Cycles

• Can be done in time .

• It is in fact usually included as a part of the Bellman-Ford
algorithm.

• We will not cover this here, see KT 6.10 for the details if
you are interested.  

O(mn)

Reading and References

• Kleinberg and Tardos 6.8.

• CLRS 22.1.

• Roughgarden 18.1, 18.2.

• The Bellman-Ford visualiser:  
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-
bellman-ford/index_en.html

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

