
Introduction to Algorithms and Data Structures

Lecture 21: Context-free languages and grammars

John Longley

School of Informatics
University of Edinburgh

3 February 2022

IADS Lecture 21 Slide 1

Algorithms and data structures in Language Processing
By ‘Language Processing’, we mean the processing of both

I Artificial (computer) languages: e.g. Java, Python, HTML, . . .
I Natural (human) languages: e.g. English, Greek, Japanese.

Despite major differences, there’s a certain amount of theory
common to both kinds: e.g. the theory of generative grammar.
(Pioneered by Sanskrit scholar Pān. ini ∼ 500–400 BCE.
Introduced into modern linguistics by Noam Chomsky around 1957.)

Pān. ini Noam Chomsky
Photo by Jameela P. – Own work Photo by Andrew Rusk from Toronto, Canada

We’ll be looking at this theory (specifically context-free grammars)
and some of the algorithms/data structures involved.

IADS Lecture 21 Slide 2

Common idea: syntax trees
A syntax tree displays the grammatical ‘constituent structure’ of a
language text:

Com

Var

x2

Assg

=

Expr

- Var

x1

S

NP

Det

The

N

sun

VP

V

shone

Constructing the tree is an important preliminary to many LP tasks.

A grammar for a language is a bunch of rules specifying what syntax
trees are possible (and hence what strings are possible).

I This lecture: Defining languages via context-free grammars.
I Next lecture: How to find the syntax tree for a given program

or sentence (parsing algorithms).

IADS Lecture 21 Slide 3

Those trees again

Com

Var

x2

Assg

=

Expr

- Var

x1

S

NP

Det

The

N

sun

VP

V

shone

There are two kinds of symbols here:

I Symbols at the leaves are called terminals: these are the basic units
from which sentences of the language are built.

I Symbols at internal nodes are called non-terminals: they don’t
themselves appear in sentences of the language, but name various
kinds of ‘sub-phrases’.

IADS Lecture 21 Slide 4

Context-free grammars: first example
Let’s give a little grammar for arithmetic expressions, e.g.

6 + 7 5 ∗ (x + 3) x ∗ ((z ∗ 2) + y) 8 z

Terminals: +, ∗, (,), x , y , z , 0, . . . , 9.

Non-terminals: Exp, Var, Num.

We designate the non-terminal Exp as the start symbol.

Rules:
Exp → Exp + Exp

Exp → Exp ∗ Exp

Exp → Var | Num | (Exp)

Var → x | y | z

Num → 0 | 1 | 2 | 3 | 4 |
5 | 6 | 7 | 8 | 9

IADS Lecture 21 Slide 5

Generating a syntax tree from a grammar

Beginning with the start symbol, we can grow syntax trees by
repeatedly expanding non-terminal symbols using these rules. E.g.:

Exp

Exp

Num

Exp

Exp

Exp Exp

NumVar

(

*

5 +

x

)

3

Exp → Exp + Exp

Exp → Exp ∗ Exp

Exp → Var | Num | (Exp)

Var → x | y | z

Num → 0 | · · · | 9

This generates 5 ∗ (x + 3) as a legal expression of the language.

IADS Lecture 21 Slide 6

The language defined by a grammar
We can generate infinitely many strings from this (finite) grammar!

The language defined by the grammar is (by definition) the set of
all strings of terminals that can be obtained via such a tree.

Or as a more ‘machine-oriented’ alternative, we can consider
derivations involving sentential forms (i.e. strings of terminals and
non-terminals reachable from the start symbol):

Exp ⇒ Exp ∗ Exp
⇒ Num ∗ Exp
⇒ Num ∗ (Exp)
⇒ Num ∗ (Exp + Exp)

⇒ 5 ∗ (Exp + Exp)

⇒ 5 ∗ (Exp + Num)

⇒ 5 ∗ (Var + Exp)

⇒ 5 ∗ (x + Exp)

⇒ 5 ∗ (x + 3)

Exp → Exp + Exp

Exp → Exp ∗ Exp

Exp → Var | Num | (Exp)

Var → x | y | z

Num → 0 | · · · | 9

IADS Lecture 21 Slide 7

Structural ambiguity

Note that strings such as 1+2+3 may be generated by more than
one tree (structural ambiguity):

Exp

Exp + Exp

Num

3

Exp Exp

Num

+

Num

1 2

Exp

Exp + Exp

Num

1

Exp Exp

Num

+

3

Num

2

This might seem ‘harmless’ . . . but what about 1+2*3 ?

I In computer languages, structural ambiguity is typically
avoided by careful design of the grammar (e.g. enforcing that
* takes precedence over +).

I In natural languages, structural ambiguity is a fact of life. E.g.

I saw a man with a telescope.

IADS Lecture 21 Slide 8

Puzzle
Grammar rules again:

Exp → Exp + Exp

Exp → Exp ∗ Exp

Exp → Var | Num | (Exp)

Var → x | y | z

Num → 0 | · · · | 9

How many possible syntax trees are there for the string below?

1 + 2 + 3 + 4

Answer: 5. Simplifying a bit, they have the following shapes:

IADS Lecture 21 Slide 9

Second example: comma-separated lists

Consider lists of (zero or more) alphabetic characters, separated by
commas. E.g.:

ε a e,d q,w ,e,r ,t,y

These can be generated by the following grammar.

Terminals: a, . . . , z , ,
Non-terminals: List, Char, Tail
Start symbol: List

List → ε | Char Tail

Char → a | · · · | z

Tail → ε | , Char Tail

(Note the rules with empty right hand side, indicated by ε.)

IADS Lecture 21 Slide 10

Syntax trees for comma-separated lists

List → ε | Char Tail

Char → a | · · · | z

Tail → ε | , Char Tail

Here’s the syntax tree for the list a, b, c :

List

Char

a

Tail

, Char

b

Tail

, Char

c

Tail

(Note how we’ve indicated the application of an ‘ε-rule’.)
IADS Lecture 21 Slide 11

Context-free grammars: formal definition

A context-free grammar (CFG) G consists of

I a finite set Σ of terminals,

I a finite set N of non-terminals, disjoint from Σ,

I a choice of start symbol S ∈ N,

I a finite set P of productions of the form X → α, where
X ∈ N, α ∈ (Σ ∪ N)∗.

IADS Lecture 21 Slide 12

The language arising from a CFG

A sentential form is any sequence of terminals and nonterminals
that can appear in a derivation starting from the start symbol.

Formal definition: The set of sentential forms derivable from G is
the smallest set S(G) ⊆ (N ∪ Σ)∗ such that

I S ∈ S(G)

I if αXβ ∈ S(G) and X → γ ∈ P, then αγβ ∈ S(G).

The language associated with grammar is the set of sentential forms
that contain only terminals.

Formal definition: The language associated with G is defined by
L(G) = S(G) ∩ Σ∗.

A language L ⊆ Σ∗ is defined to be context-free if there exists some
CFG G such that L = L(G).

IADS Lecture 21 Slide 13

Assorted remarks

I X → α1 | α2 | · · · | αn is simply an abbreviation for a
bunch of productions X → α1, X → α2, . . . , X → αn.

I These grammars are called context-free because a rule X → α
says that an X can always be expanded to α, no matter where
the X occurs.
This contrasts with context-sensitive rules, which might allow
us to expand X only in certain contexts, e.g. bXc → bαc .

I Broad intuition: context-free languages allow nesting of phrase
structures to arbitrary depth. E.g. brackets, begin-end blocks,
for-loops, subordinate clauses in English, . . .

IADS Lecture 21 Slide 14

A programming language example

Some context-free rules for a little programming language.

stmt → if-stmt | while-stmt | begin-stmt | assg-stmt

if-stmt → if bool-expr then stmt else stmt

while-stmt → while bool-expr do stmt

begin-stmt → begin stmt-list end

stmt-list → stmt | stmt ; stmt-list

assg-stmt → var := arith-expr

bool-expr → arith-expr compare-op arith-expr

compare-op → < | > | <= | >= | == | ! =

Also need rules for arith-expr and var (in style of earlier grammar).

Grammars like this (often with ::= or : in place of →) are standard
in computer language reference manuals. This notation is often
called BNF (Backus-Naur Form).

IADS Lecture 21 Slide 15

A natural language example

Consider the following lexical classes (‘parts of speech’) in English:

N nouns (alien, cat, dog, house, malt, owl, rat, table)
Name proper names (Jack, Susan)
TrV transitive verbs (admired, ate, built, chased, killed)
LocV locative verbs (is, lives, lay)
Prep prepositions (in, on, by, under)
Det determiners (the, my, some)

Now consider the following productions (start symbol S):

S → NP VP

NP → this | Name | Det N | Det N RelCl

RelCl → that VP | that NP TrV | NP TrV | NP LocV Prep

VP → is NP | TrV NP | LocV Prep NP

IADS Lecture 21 Slide 16

Natural language example in action

Even this modest bunch of rules can generate a rich multitude of
English sentences, for example:

I this is Jack

I some alien ate my owl

I Susan admired the dog that lay under my table

I this is the dog that chased the cat that killed the rat that ate
the malt that lay in the house that Jack built

IADS Lecture 21 Slide 17

Nesting in natural language

Excerpt from Jane Austen, Mansfield Park.

Whatever effect Sir Thomas’s little harangue might really produce on

Mr. Crawford, it raised some awkward sensations in two of the others,

two of his most attentive listeners — Miss Crawford and Fanny. One of

whom, having never before understood that Thornton was so soon and so

completely to be his home, was pondering with downcast eyes on what it

would be not to see Edmund every day; and the other, startled from the

agreeable fancies she had been previously indulging on the strength of her

brother’s description , no longer able, in the picture she had been forming

of a future Thornton, to shut out the church, sink the clergyman, and see

only the respectable, elegant, modernized and occasional residence of a

man of independent fortune, was considering Sir Thomas, with decided

ill-will, as the destroyer of all this, and suffering the more from . . .

IADS Lecture 21 Slide 18

Non-examinable: Regular vs. context-free languages

A regular language is one that can be defined via a finite-state
machine (with accepting states).
Or equivalently by a regular expression.

E.g. L = {s ∈ {0, 1}∗ | s contains an even number of 0’s}.

0

1 1

0

even odd
1∗(01∗01∗)∗

I Every regular language is context-free (proof not too hard).

I But . . . not every context-free language is regular!
(In fact, most CFLs of interest are non-regular.)

IADS Lecture 21 Slide 19

Example: a non-regular context-free language

Again non-examinable.

Consider L = { (n)n | n ∈ N }. (E.g. (()) ∈ L, but (())) 6∈ L.)

Context-free grammar: S → ε | (S).

Claim: There’s no deterministic FSM that accepts exactly L.

Proof: Suppose there were one, with start state s0.
Feed in (((. . ., and trace out the sequence of states visited:

s0
(−→ s1

(−→ s2
(−→ · · ·

Keep going until some state appears twice: si = sj where i 6= j .
(Must happen eventually, as there are only finitely many states.)
Then starting from s0, the strings (i)i and (j)i take us to the same state.

Impossible, since (i)i should be accepted and (j)i rejected.

A more general version of this idea is embodied by the infamous
Pumping Lemma.

IADS Lecture 21 Slide 20

Reading/browsing

Reading on context-free grammars/languages (sadly not in CLRS):

I https://en.wikipedia.org/wiki/Context-free_grammar

Aligns quite well with our treatment. Many examples.

I M. Sipser, Introduction to the Theory of Computation (3rd ed),
Section 2.1. Online access via UoE library.

I https://docs.python.org/3/reference/grammar.html

I https://docs.oracle.com/javase/specs/jls/se7/html/

jls-18.html

I Treebank Semantics Parsed Corpus (large browsable collection of
syntax trees for a variety of English texts):
http://www.compling.jp/ajb129/tspc.html

Next time: The parsing problem – given a program / expression /
sentence, construct its syntax tree. Algorithms for this.

IADS Lecture 21 Slide 21

https://en.wikipedia.org/wiki/Context-free_grammar
https://docs.python.org/3/reference/grammar.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://www.compling.jp/ajb129/tspc.html

And finally . . .

A tribute to Chomsky’s groundbreaking book,
Syntactic Structures (1957),

which introduced the theory of context-free grammars
and ushered in a new era of linguistics.

‘The theory of Syntactic S.’

IADS Lecture 21 Slide 22

	Context-free grammars: the formal definition

