
Introduction to Algorithms and Data Structures

Lecture 22: Parsing for context-free languages

John Longley

School of Informatics
University of Edinburgh

6 February 2024

IADS Lecture 22 Slide 1

The parsing problem
Last time, we saw what a context-free grammar was.

Exp → Num | (Exp + Exp)

Num → 0 | · · · | 9

This time, we’ll consider the parsing problem: how do we get from
a string of terminals . . .

(3 + (4 + 5))

. . . to a tree Exp

(Exp

Num

3

+ Exp

(Exp

Num

4

+ Exp

Num

5

)

)

Often an essential prelude to other tasks (e.g. evaluating an expression!)

IADS Lecture 22 Slide 2

The CYK algorithm

We’ll describe a general approach that works for any CFG, using
the Cocke-Younger-Kasami (CYK or CKY) algorithm.
(Seemingly first discovered by Itiroo Sakai in 1961.)
Another example of dynamic programming.

▶ First see how this algorithm works on a special class of
grammars, those in Chomsky normal form (CNF).

▶ Then see how any context-free grammar can be transformed
to an ‘equivalent’ one in CNF.

▶ CYK parses inputs of length n in time Θ(n3). Fine for short
sentences, but not practical for long computer programs.
Next time, we’ll look at parsing algorithms better suited to
computer languages: less general, but faster.

IADS Lecture 22 Slide 3

What’s Chomsky normal form?

Recall that in a CFG, the right-hand side of each production is a
(possibly empty) string of terminals and non-terminals. E.g.

Exp → (Exp + Exp)

A grammar in Chomsky normal form is one in which each RHS
consists of

▶ either just two non-terminals (e.g. X → YZ)

▶ or just one terminal (e.g. X → +).

We’ll see soon what this curious restriction buys us.
Most important point is that RHSs with ≥ 3 symbols are forbidden.

IADS Lecture 22 Slide 4

Chomsky normal form: example
The following grammar is in CNF.

Terminals: book, orange, heavy, my, very
Non-terminals: NP, Nom, AP, A, Det, Adv
Start symbol: NP

NP → Det Nom

Nom → book | orange | AP Nom

AP → heavy | orange | Adv A

A → heavy | orange

Det → my

Adv → very

Generates noun phrases like:

my very heavy orange my very heavy orange book

(N.B. CNF grammars often involve some duplication!
Writing AP → A would be simpler, but not CNF.)

IADS Lecture 22 Slide 5

CYK parsing: the idea
Let’s insert ‘position markers’ in the input string we wish to parse:

0 my 1 very 2 heavy 3 orange 4 book 5

We can then talk about substrings of the input: e.g. the pair (2,4)
indicates the substring ‘heavy orange’.

Primary question: Can the entire string (0,5) be derived from the
start symbol NP? If so, how?

As is common in Dynamic Programming, we approach this by
generalizing our objective slightly: Which substrings can be derived
from which non-terminals?

We store the solutions to these ‘subproblems’ in a 2-dim array: entry
for (i , j) (where i < j) records possible analyses of the substring
indicated by (i , j).

Broadly speaking, we work our way from shorter to longer substrings
(some flexibility re precise ordering of subproblems).

IADS Lecture 22 Slide 6

Filling out the CYK chart: example

NP → Det Nom A → heavy | orange
Nom → book | orange | AP Nom Det → my
AP → heavy | orange | Adv A Adv → very

0 my 1 very 2 heavy 3 orange 4 book 5

j 1 2 3 4 5
i my very heavy orange book

0 my Det NP NP

1 very Adv AP Nom Nom

2 heavy A,AP Nom Nom

3 orange Nom,A,AP Nom

4 book Nom

IADS Lecture 22 Slide 7

CYK: The general algorithm

CYK (s,G): # s=input string, G=CNF grammar
n = length(s)
allocate table[0,...,n−1][1,...,n]
for j = 1 to n # columns

for (X → t) ∈ G
if t = s[j−1]

add X to table[j−1,j] # diagonal cell
for i = j−2 downto 0 # rows

for k = i+1 to j−1 # possible splits
for (X → YZ) ∈ G

if Y ∈ table[i,k] and Z ∈ table [k,j]
add X to table[i,j] # non-diagonal cell

return table

IADS Lecture 22 Slide 8

From recognizer to parser
▶ So far, we just have a recognizer: a way of determining

whether a string belongs to the given language.

▶ Changing this to a parser requires recording which existing
constituents were combined to make each new constituent.

▶ The algorithm identifies all possible parses.
There may also be phantom constituents that don’t form part
of any complete syntax tree (e.g. ‘my very heavy orange’).

IADS Lecture 22 Slide 9

Runtime of CYK

Looking at the pseudocode for CYK, we have three nested for-loops,
each of which we go round ≤ n times.
And within them, some iteration over the grammar rules.

So for any fixed grammar G, the algorithm runs in time O(n3).
(If we allow grammar to vary, runtime is O(mn3),
where m is ‘size’ of grammar.)

What would happen if we allowed ternary rules, e.g. A → BCD?

To fill a cell (i , j), we’d need to consider all possible three-way splits
(i , k), (k , l), (l , j) where i < k < l < j .
Number of these is quadratic in j − i .
So our overall runtime would go up to Θ(n4).

That’s the main reason we like Chomsky normal form
(there are other minor benefits).

IADS Lecture 22 Slide 10

More on Chomsky normal form

Recall: a context-free grammar G = (Σ,N,S ,P) is in Chomsky
normal form (CNF) if all productions are of the form

A → BC or A → a (A,B,C ∈ N, a ∈ Σ)

Theorem: Disregarding the empty string, every CFG G is equivalent
to a grammar G′ in Chomsky normal form. (L(G′) = L(G)− {ϵ})
And there’s an algorithm which, given G, finds a suitable G′.

Key idea: To eliminate rules with ≥ 3 symbols on the RHS, we
could replace e.g.

X → ABCD by X → AY , Y → BZ , Z → CD

where Y ,Z are newly added nonterminals.

IADS Lecture 22 Slide 11

Converting to Chomsky Normal Form
Consider for example the grammar

S → TT | [S] T → ϵ | (T)

Step 1: Apply trick on last slide to rules with ≥ 3 symbols on RHS.
In this case, apply it to S → [S] and T → (T):

S → TT | [W T → ϵ | (V

W → S] V → T)

Step 2: Identify the set E of all non-terminals X such that ϵ can be
derived from X (nullable non-terminals).

In this case, T → ϵ tells us T ∈ E . Then S → TT tells us S ∈ E .
And that’s all. So E = {S ,T}.
In general, E is the smallest set such that if X → Y1 . . .Yr ∈ P
and Y1, . . . ,Yr ∈ E then X ∈ E (allowing r = 0 here).

IADS Lecture 22 Slide 12

Converting to Chomsky Normal Form, ctd.

S → TT | [W T → ϵ | (V

W → S] V → T)

Step 3: Delete all ϵ-productions.
To compensate, for each rule X → Yα or X → αY , where Y ∈ E
and α ̸= ϵ, add a new rule X → α.

In this case, since E = {S ,T}, we get:

S → TT | T | [W T → (V

W → S] |] V → T) |)

Step 4: Remove unit productions X → Y .
To compensate, for every rule Y → α, add in X → α.
In this case, do this for S → T :

S → TT | (V | [W T → (V

W → S] |] V → T) |)

IADS Lecture 22 Slide 13

Converting to Chomsky Normal Form, ctd., ctd.

S → TT | (V | [W T → (V

W → S] |] V → T) |)

By this stage, all RHSs consist of 1 terminal or 2 symbols. So just
need to get rid of terminals from the ‘binary’ rules.

Step 5: For each terminal a, add a fresh nonterminal Za and a
production Za → a, then replace a by Za in all binary rules.

In this case, we add four rules:

Z(→ (Z) →) Z[→ [Z] →]

And rewrite the existing rules to:

S → TT | Z(V | Z[W T → Z(V

W → SZ] |] V → TZ) |)

The grammar is now in Chomsky Normal Form, and we’re done.

IADS Lecture 22 Slide 14

Assorted remarks

▶ Given a CFG G, we can do the above (once for all) to convert
it to a CNF grammar G′, then run CYK for G′ (many times).

▶ This will give us a syntax tree w.r.t. G′. Bit of work to
translate back to a tree w.r.t. G — not very hard/interesting.

▶ If G has m rules, our algorithm gives a G′ with O(m2) rules.
Quadratic blow-up possible, but not a problem in practice.

▶ Versions of CYK are quite widely used in Natural Language
context (where sentences typically have < 100 words).
But Θ(n3) parsing not good enough for computer languages.

IADS Lecture 22 Slide 15

Reading

Recommended: D. Jurafsky and J.H. Martin,
Speech and Language Processing, 3rd ed. (draft).
Chapter 13 (Constituency parsing), Sections 1 and 2.
Available at https://web.stanford.edu/~jurafsky/slp3

IADS Lecture 22 Slide 16

https://web.stanford.edu/~jurafsky/slp3

