Informatics 2 — Introduction to Algorithms
and Data Structures
Tutorial 8: Parsing algorithms and polytime reductions

1. Consider the following context free grammar with start symbol S:

S — NPVP PP — PreNP

S — IVPPP V. — ate
NP — DetN Det — thela
VP — ate NP N — fork | salad
VP — V Pre — with

(a) Convert this grammar to Chomsky Normal Form (see Lecture 22).

(b) Use the CYK algorithm from Lecture 22 to parse the sentence
I ate the salad with a fork

(¢) How many complete analyses of the sentence do you get? Draw their syntax
trees.

(d) Now add a further production rule to your CNF grammar to allow for the alter-
native prepositional phrase attachment, i.e. ‘the salad with a fork’. Revise your
CYK chart or graph to include any new entries this introduces.

How many complete analyses are there now for the above sentence?

2. Consider the following grammar for arithmetic expressions such as (n % n * n). Here
n stands for the lexical category of numeric literals such as 5 and —23.

Terminals: (,), *n
Nonterminals: Exp, Ops
Productions: Exp — nOps | (Exp)
Ops — ¢ | xnOps
Start symbol: Exp
This grammar is somewhat restrictive — for example, it does not admit the string
(n % n) *n— but it will do as an example.

This is in fact an LL(1) grammar with the following parse table:

|) * n $
Exp | (Exp) n Ops
Ops € *n Ops €

Here, for example, the top left entry (Exp) stands for the production Exp — (Exp).

(a)

(b)

Using this table, apply the LL(1) parsing algorithm from Lecture 23 to the input
(nxn)

At each step, show the operation applied, the input string remaining, and the
stack state, as in the lecture.

For each of the following three input strings, explain how and where an error
arises in the course of the LL(1) parsing algorithm. In each case, suggest an
error message that an LL(1) parser could issue to the author of the input string.

() n) n *

3. Consider the MAXIMUM INDEPENDENT SET problem: We are given an undirected
graph G = (V, E) and we are asked to find an independent set I of V' of maximum

size.

An independent set I C V of the graph is a set of nodes such that for every two

nodes v, u € I, we have (v,u) ¢ E.

(a)
(b)

(d)

Define the appropriate decision version of the MAXIMUM INDEPENDENT SET set
problem, called INDEPENDENT SET.

Show that INDEPENDENT SET is NP-complete. For the NP-hardness, construct
a polynomial-time reduction from 3SAT.

Hint: Construct “clause gadgets”, i.e., triangles of nodes corresponding to the
three literals of a clause, similarly to the reduction from 3SAT to VERTEX COVER
presented in class to show the latter problem is NP-hard.

Assume that you have an oracle (i.e., an algorithm that runs in time O(1) every-
time it is called) to solve the MAXIMUM INDEPENDENT SET problem. Explain
how to use this oracle to solve the INDEPENDENT SET problem in polynomial
time.

Assume that you have an oracle to solve the INDEPENDENT SET problem. Ex-
plain how to use this oracle to solve the MAXIMUM INDEPENDENT SET problem
in polynomial time.

4. (*Optional) A k-colouring of a graph G is a function f : V — {1,2,...,k} mapping
nodes to colours, such that for any nodes w and v such that (u,v) € E, it holds that
fw) # f(v).

Consider the 3-COLOURING problem: Given a graph G as input, decide whether there
is a 3-colouring of G.. Prove that 3-COLOURING is NP-complete. For the NP-hardness,
construct a polynomial-time reduction from 3SAT.

John Longley and Aris Filos-Ratsikas
February 2024

