Compiling Techniques

Lecture 14: Building SSA Form

Reminder: Static Single-Assignment (SSA) Form

> "A program is defined to be in Static Single-Assignment (SSA) form if each variable is a target of exactly one assignment statement in the program text."

- Each assignment statement defines a unique name.
- Each use refers to a single name.

Representing Control Flow

$$
\begin{aligned}
& x=0 \\
& \text { if }(a==42) \\
& \qquad x=x+1 \\
& \text { else } \\
& \qquad x=3
\end{aligned}
$$

$$
y=x+5
$$

Representing Control Flow

$$
\begin{array}{ll}
\begin{array}{ll}
x=0 \\
\text { if }(a==42) \\
x=x+1 \\
\text { else } \\
x=3
\end{array} & \begin{array}{l}
x_{1}=0 \\
\text { if }(a==42)
\end{array} \\
& x_{2}=x_{1}+1 \\
& \\
\text { else } \\
y=x+5 & \\
x_{3}=3
\end{array}
$$

Representing Control Flow

> Control Flow
> Graph (CFG)

$$
\begin{aligned}
& x=0 \\
& \text { if }(a==42) \\
& \quad x=x+1
\end{aligned}
$$

else

$$
x=3
$$

$$
y=x+5
$$

$$
x_{1}=0
$$

$$
\text { if }(a==42)
$$

$$
x_{2}=x_{1}+1
$$

else

$$
x_{3}=3
$$

$$
y=x_{?}+5
$$

Representing Control Flow

$$
\begin{array}{ll}
\begin{array}{ll}
x=0 \\
\text { if }(a==42) \\
x=x+1 \\
\text { else } \\
x=3
\end{array} & \begin{array}{l}
x_{1}=0 \\
\text { if }(a==42)
\end{array} \\
& x_{2}=x_{1}+ \\
y=x+5 & \\
\text { else } \\
x_{3}=3 \\
x_{4}=\phi\left(x_{2}, x_{3}\right) \\
y=x_{4}+5
\end{array}
$$

ϕ-function placement

Naive approach:

1. At each join point insert a ϕ-function for every variable name

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D O M}(\boldsymbol{B})$	B_{0}	B_{0}, B_{1}					

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D O M}(\boldsymbol{B})$	B_{0}	B_{0}, B_{1}	B_{0}, B_{1}, B_{2}	B_{0}, B_{1}, B_{3}			

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D O M}(\boldsymbol{B})$	B_{0}	B_{0}, B_{1}	B_{0}, B_{1}, B_{2}	B_{0}, B_{1}, B_{3}	B_{0}, B_{1}, B_{4}		

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

Dominators

p dominates $q(p \gg q, p$ dom $q)$ iff
every path from the entry node b_{0} to q also visits p.
$\operatorname{Dom}(q)$ - set of nodes that dominate q.

dom Relation

- reflexive
a dom a
- antisymmetric

$$
a \operatorname{dom} b \wedge b \operatorname{dom} a \Rightarrow a=b
$$

- transitive
$a \operatorname{dom} b \wedge b \operatorname{dom} c \Rightarrow a \operatorname{dom} c$

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$							

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing						

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.

q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}					

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.
q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}			

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.
q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}		

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.
q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	

Dominance frontier

p strictly dominates q iff

p dominates q and $p \neq q$.
q is in dominance frontier of p iff

- $\quad p$ domitates a predecessor of q.
- p does not strictly dominate q.
$D F(p)$ - dominance frontier of p.

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

Minimal SSA

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

Minimal SSA

Idea
an assignment to x in the node B introduces a ϕ-function in every node from DF(B)

1. ϕ-function placement
2. renaming

$$
\begin{aligned}
& B_{0}: x \\
& y=0 \\
& y
\end{aligned}
$$

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

Minimal SSA

Idea
an assignment to x in the node B introduces a ϕ-function in every node from $D F(B)$

1. ϕ-function placement
2. renaming

$$
\begin{aligned}
& B_{0}: x \\
& y=0 \\
& y
\end{aligned}
$$

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

Minimal SSA

Idea
an assignment to x in the node B introduces a ϕ-function in every node from DF(B)

1. ϕ-function placement
2. renaming

$$
\begin{aligned}
& B_{0}: x \\
&=0 \\
& y=1
\end{aligned}
$$

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

$$
\begin{aligned}
B_{6}: x & =\phi(x, x) \\
y & =\phi(y, y)
\end{aligned}
$$

Minimal SSA

Idea
an assignment to x in the node B introduces a ϕ-function in every node from DF(B)

1. ϕ-function placement
2. renaming

$$
\begin{aligned}
B_{0}: & x \\
= & =0 \\
y & =1
\end{aligned}
$$

\boldsymbol{B}	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\boldsymbol{D F}(\boldsymbol{B})$	\varnothing	B_{1}, B_{6}	B_{4}	B_{4}	B_{1}, B_{6}	B_{6}	\varnothing

$$
\begin{aligned}
B_{6}: & x
\end{aligned}=\phi(x, x), ~=\phi(y, y)
$$

Minimal SSA

Idea

an assignment to x in the node B introduces a ϕ-function in every node from DF(B)

1. ϕ-function placement
2. renaming

$$
\begin{aligned}
B_{0}: & x_{\theta}
\end{aligned}=0
$$

SSA forms

- Maximal SSA

Introduce a ϕ-function at every join node for every variable

- Minimal SSA

Introduce a ϕ-function at every join node for every variable where two distinct definitions of the same name meet

- Pruned SSA

Same as minimal SSA, but don't insert ϕ-functions if its result is not live.

- Semipruned SSA

Same as minimal SSA, but don't insert ϕ-functions for names that are not live across a block boundary

Block Arguments

Instead of using ϕ-nodes (like LLVM), xDSL and MLIR use block arguments to represent control flow - dependent values.

```
func.func @simple(i64, i1) -> i64 {
^bb0(%a: i64, %cond: i1): // Code dominated by ^bb0 may refer to %a
    cf.cond_br %cond, ^bb1, ^bb2
^bb1:
    cf.br ^bb3(%a: i64) // Branch passes %a as the argument
^bb2:
    %b = arith.addi %a, %a : i64
    cf.br ^bb3(%b: i64) // Branch passes %b as the argument
// ^bb3 receives an argument, named %c, from predecessors
// and passes it on to bb4 along with %a. %a is referenced
// directly from its defining operation and is not passed through
// an argument of ^bb3.
^bb3(%c: i64):
    cf.br ^bb4(%c, %a : i64, i64)
^bb4(%d : i64, %e : i64):
    %0 = arith.addi %d, %e : i64
    return %0 : i64 // Return is also a terminator.
}
```

