
Informatics 2 – Introduction to

Algorithms and Data Structures

Lab Sheet 5: Dynamic Programming

In this lab we will be implementing dynamic programming algorithms that were
covered in the lectures.

Task 1: Implementation of the Bellman-Ford Al-
gorithm

We will first implement the Bellman-Ford algorithm. In the previous lab sheet
we implemented (weighted) graphs using the adjacency matrix representation.
In particular, for those graphs we had Aij = `ij if and only if there is a directed
edge (i, j) of length `ij in G. Contrary to the previous lab sheet though, we will
assume that for all (i, j) ∈ E, we have `ij ∈ R. We will use Aij = L to denote
that (i, j) 6= E, where L will be defined to be some very large global variable
(e.g., L=1000).

Your task will be to implement the Bellman-Ford algorithm using the pseu-
docode presented in Lecture 20. In particular, you may define the 2D-array M
to be a list of lists: for example the element M [3, 5] will be the 5th element of
the third list (indexed from 1). The algorithm should designate a node v (given
as input as an integer), and compute the costs of the cost-minimizing paths
from every node to v. In particular, define a function

bellman_ford(graph, target_node)

The graph argument will be of the class graph that you defined in Lab Sheet 4.
The target_node will be an integer corresponding to a node of the graph. The
function should return the 2D-array M (as a list of lists).

Run your function on the graph of Figure 6.23a in Kleinberg-Tardos (the same
example that was used in Lecture 20) with node t as input. Compare the
outcome of your function with the table presented in Figure 6.23b.

Task 2: Algorithms for the Weighted Interval
Scheduling Problem

In Lab Sheet 4, you implemented three different algorithms for the interval
scheduling problem, namely
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- the algorithm that chooses the compatible interval with the earliest fin-
ishing time, greedyEFT,

- the algorithm that chooses the compatible interval with the earliest start-
ing time, greedyEST,

- the algorithm that chooses the smallest compatible interval, greedySmallest,

and performed some experiments with them on random inputs.

Exercise 1:
In this task you will consider the weighted interval scheduling problem and you
will implement two more algorithms:

- the algorithm that chooses the compatible interval with the largest weight,

- the dynamic programming algorithm that finds an optimal schedule that
we saw in the lectures.

Each algorithm will be a function that inputs a set of intervals with starting
and finishing times as before, but now it will also input the weights of the in-
tervals. For that, we can enhance our dictionary representation from Lab Sheet
4 to now have a list of three elements as the value, namely the starting time,
the finishing time, and the weight, respectively. The output will be a set of
compatible intervals.

For example, a possible input could be

{1: [0.3, 0.5, 4], 2:[0.4,0.6, 3], 3:[0.1, 0.8,7],

4:[0.7,0.8], 5:[0.2,0.3,3]}

The output of the function will be of a set data type, or of a list data type,
containing the ids of the intervals (which are the same as the keys in the input
dictionary). For example, a feasible schedule for the input above could be {1, 4}.
An infeasible schedule would be {1, 2} as intervals 1 and 2 overlap.

Remark 1: You will need to sort the dictionary in terms of the third element
of their value (which is a list), which is the weight of the interval. You can do
that very similarly to the way you sorted the dictionaries in Lab Sheet 4.

For the dynamic programming approach, you can use a list for the 1D-array M .
The list will store at M [i] the weight of the optimal solution using the intervals
1, . . . , i. You may refer to the pseudocode as given in the lectures.

Exercise 2:
Now that you have the implementations of all five algorithms, you will again test
them on randomly generated instances to test and compare their performance.
For n = 5, 10, 20, 50, 100, generate n intervals with their starting and finishing
time drawn uniformly at random from [0, 1], ensuring that the finishing time is
after the starting time. The easiest way to achieve this is to draw two values for
each interval, and set the smallest one to the starting time and the largest one
to the finishing time. For each interval, also draw a weight in [0, 20] uniformly at
random. Calculate the total weight of intervals that are included in the output
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of each algorithm. Repeat this K times (e.g., for K = 100) and calculate the
average weight of intervals that each algorithm includes in the output schedule
(you may use a list to store intermediate calculations). Report your observations
on the comparisons between those different algorithms.
In addition to the performance of the algorithms in terms of the optimisation
objective, you can also test their running time. Using the timeit function,
measure the average time that each algorithm requires over the sequence of K
runs. Print the measured times on the screen.

3


