
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 6 - Greedy and Dynamic Programming Solutions

January 30, 2024

1. In this question, you are asked to execute Dijkstra’s Shortest Path Algorithm starting
from node 0 in Figure 1. Show the steps of the algorithm and the value of d(v)
computed for each node v added to the set S of explored nodes. Also show the shortest
path Pu which is computed for each such new node u throughout the execution of the
algorithm.

Figure 1: A directed graph with edge lengths indicated over the edges.

Solution: Let G = (V,E) be the graph of the figure. Initially we have d[u] =∞ and
Pu = null for each u ∈ V {0}, and d[0] = 0, P0 = (0).

First Iteration: Candidate nodes to be added to S: 1, 2, 4.

d′(1) = d(0) + ℓ(0,1) = 0 + 2 = 2

d′(2) = d(0) + ℓ(0,2) = 0 + 4 = 4

d′(4) = d(0) + ℓ(0,4) = 0 + 5 = 5

The minimum distance is d′(1), so we have S = S ∪ {1} = {0, 1}. We record d(1) =
d′(1) = 2 and P1 = (0→ 1).

Second Iteration: Candidate nodes to be added to S: 2, 4.

Remark: Now nodes 2 and 4 can also be reached via the edges (1,2) and (1,4) in
addition to (0,2) and (0,4) respectively. That means that we might need to calculate
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d′(2) and d′(4) again.

d′(2) = min{d(0) + ℓ(0,2), d(1) + ℓ(1,2)} = min{4, 5} = 4

d′(4) = min{d(0) + ℓ(0,4), d(1) + ℓ(1,4)} = min{5, 4} = 4

The minimum distance if d′(2) = d′(4) = 4 so both options are possible. Assume
that we choose node 2 to be added, so we have S = S ∪ {2} = {0, 1, 2}. We record
d(2) = d′(2) = 4 and P2 = (0→ 2).

Third Iteration: Candidate nodes to be added to S: 4.

Remark: Node 4 can be reached via the edges (0,4) and (1,4) as before, so we don’t
need to recalculate.

We have d′(4) = 4 and we add node 4 to S, so we have S = S ∪ {4} = {0, 1, 2, 4}. We
record d(4) = d′(4) = 4 and P4 = (0→ 1→ 4).

Third Iteration: Candidate nodes to be added to S: None.

Remark: Node 3 has not been visited, but it cannot be reached from 0. This is different
from what we saw in the lectures, where we assumed that every node is reachable from
the starting node. If this is not the case, the algorithm only needs to explore nodes
in the connected component of the starting node, and then terminate.

2. Consider the fractional knapsack problem, in which there is a set of n infinitely divisible
items with values vi, for i = 1, . . . , n and weights wi, for i = 1, . . . , n, and there is a
total weight constraint W . The goal is to find fractions (x1, . . . , xn) of each item, with
0 ≤ xi ≤ 1 such that

∑n
i=1 xi · vi is maximised, subject to the total weight constraint∑n

i=1 xi · wi ≤W .

A greedy algorithm for the fractional knapsack problem in each step chooses an item
i based on some criterion and adds the largest fraction xi of item i that is possible to
fit in the knapsack, without violating the weight constraint, given the items already
added to the knapsack in previous steps. The algorithm terminates when the total
weight of items included in the knapsack exactly meets the weight constraint, or when
all of the items have entirely been added (i.e., xi = 1 for all i) in the knapsack.

Consider the following three criteria for selecting the item to be added to the knapsack:

(a) Add the item with the largest value vi among those not already considered
(Criterion a).

(b) Add the item with the smallest weight wi among those not already considered
(Criterion b).

(c) Add the item with the largest ratio vi/wi among those not already considered
(Criterion c).

The first objective is to prove that:

(a) the greedy algorithms with Criterion a or Criterion b are not optimal.

(b) the greedy algorithm with Criterion c is optimal.

Consider the greedy algorithm with Criterion c for the (0/1)-Knapsack problem that
we saw in the lectures, which either adds a job entirely to the knapsack or not at all.
Does it solve the 0/1-Knapsack problem optimally? Provide either a correctness proof
or a counterexample to support your claim.

Solution:
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(a) For Criterion a, consider an instance with three items with values v1 = 10, v2 = 9,
v3 = 9, weights w1 = 10, w2 = 5 and w3 = 5 and W = 10. The algorithm will
add x1 = 1, x2 = x3 = 0 for a total value of 10. The optimal solution will add
x1 = 0, x2 = x3 = 1 for a total value of 18. For Criterion b, consider an instance
with three items with values v1 = 1, v2 = 1 and v3 = 10, weights w1 = w2 = 5
and w3 = 10, and W = 10. The algorithm will add x1 = x2 = 1, x3 = 0 for a
total value of 2, whereas the optimal solution will add x1 = x2 = 0, x3 = 1 for a
total value of 10.

(b) This is Dantzig’s greedy algorithm for solving the fractional knapsack problem.
The algorithm works as follows:

- First, sort the items in terms on non-increasing ratio vi/wi (this is sometimes
called the “bang-per-buck”).

- Start putting items in the knapsack in that order, until you encounter an
item that can not fit in the knapsack anymore.

- Put as large a fraction of that item in the knapsack, until you reach the total
weight constraint W .

We claim that this algorithm solves the fractional knapsack problem optimally.
Suppose without loss of generality that the items are sorted in terms of non-
increasing vi/wi and that no two items have the same such ratio (therefore the
order is actually decreasing). Let o1, o2, . . . , on be the fractions of items that are
put in the knapsack in the optimal solution in that order, and let g1, . . . , gn be the
fractions of items selected by the greedy algorithm (in both cases, some fractions
might be 0). By definition of the optimal solution, we have that

∑n
i=1 oi · vi ≥∑n

i=1 gi · vi.
If oi = gi for every index, then the two solutions are the same and we are done.
Let j be the first index for which the two solutions differ. By definition of the
greedy algorithm, it must hold that gj > oj , as item j has the largest ratio vj/wj

over all remaining items (not already in the knapsack), and the greedy algorithm
selects as large a fraction of it as possible. By the definition of the optimal, there
must exist another index ℓ > j such that oℓ > gℓ. Now, construct a new solution
o′ = {o′1, o′2, . . . , o′n} such that

- o′k = ok for all k ̸= j, ℓ,

- o′j = oj + ε,

- o′ℓ = oℓ − ε · wj

wℓ
.

Note that
∑n

i=1 oi · wi =
∑n

i=1 o
′
i · wi and therefore o′i is a feasible solution.

Furthermore, we have that

n∑
i=1

o′i · vi =
n∑

i=1

oi · vi + εvj − ε · wj

wℓ
· vℓ >

n∑
i=1

oi · vi,

where the last inequality holds since vj/wj > vℓ/wℓ. This means that o is a
feasible solution with largest total value than o, contradicting the optimality of
o.

Dantzig’s algorithm does not solve the 0/1-Knapsack problem optimally. To see this,
consider an instance with 3 jobs such that v1 = 300, v2 = 190 and v3 = 180, w1 = 100,
w2 = 95, and w3 = 90, and W = 185. We have v1/w1 = 3, v2/w2 = 2, v3/w3 = 2.
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Therefore the algorithm will add the entire item 1 (i.e., x1 = 1) to the knapsack
only, for a total value of 300. The optimal solution will add items 2 and 3 instead
(x2 = x3 = 1) for a total value of 190 + 180 = 370.

3. In the UK, coins have demoninations 1p, 2p, 5p, 10p, 20p, 50p, £1 and £2. A
frequently-executed task in the retail sector involves taking an input value (say 88p)
and calculating a collection of coins (which may include duplicates) which will sum
to that value. We assume that we have an unlimited supply of coins of each value.
Formally, the coin changing problem is the following:

Input: An input value v ∈ N0, and a sequence of coin values c0, c1, . . . ck ∈ N0.

Output: A multiset S of coins with values that sum to v, whose size is the minimum
possible for v in this system. The solution will be represented as a list S of length k,
with S[i] being the number of coins of value ci, for each i ∈ [0, k].

We may assume that a solution is always possible (e.g., by assuming that c0 = 1).

Design a dynamic programming-based algorithm which solves the coin changing prob-
lem. Run your algorithm on the following input with k = 2: v = 18, c0 = 1, c1 = 5,
and c2 = 7.

Instead of the dynamic programming algorithm, perhaps a simple greedy algorithm
could work: as the greedy criterion, always choose the coin of maximum value among
those whose value is smaller than the remaining value. What is the outcome of the
algorithm on the example above?

Solution: Let C(v) denote the value of the optimal solution (i.e., the number of coins)
on input v ∈ N0. In the optimal solution, there must exist some coin of denomination
ci. Furthermore, the remaining value v− ci that we need to make with our remaining
coins is an optimal solution to the coin changing problem on input v−ci; our problem
has therefore the optimal substructure property. Specifically, we have that

C(v) = 1 + C(v − ci).

One potential issue here is that we do not know the denomination ci of the first coin i
to be included in C(v). We can however check all k possibilities and find the minimum
value. In other words, we can write

C(v) =

{
1, if there exists i ∈ [0, k] such that ci = v

1 + minj∈[0,k] C(v − cj), otherwise.

We have therefore a recurrence relation that allows us to compute the value C(v) via
computing the value C(v − cj) for other denominations cj . In dynamic programming
fashion, we will precompute those and store them in an array for use when needed.
In particular, we will compute C(w) for all w from 1 to v (recall that 1 was our
lowest demonination), where C[w] will store the value of the optimal solution (i.e.,
the smallest number of coins) to make a value of w. We can also use an auxiliary
array P to store the coins that led us to the values of the optimal solution (or we can
compute those afterwards based on the values). We present the pseudocode of the
algorithm below.
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Algorithm CoinChanging(v, c0, . . . , ck)

C[v] will be the optimal number of coins, and S will contain the coins themselves.

Initialise C,P to contain ∞, S to contain 0.
C[0]← 0, C[1]← 1, P [1]← 0.
for w = 2 to v do

for i = 0 to k do
if ci ≤ w and C[w − ci] + 1 < C[w] then

C[w]← 1 + C[w − ci]
P [w]← i

end if
end for

end for
while v > 0 do

i← P [v]
S[i]← S[i] + 1
v ← v − ci

end while

Suppose now that we run the algorithm on the input with k = 2: v = 18, c0 = 1,
c1 = 5, and c2 = 7. We have C[0] = 0, C[1] = 1, and P [0] = 0 in the initialisation
step. Our outer for loop will run for w from 2 to 18.

For w = 2, we first consider i = 0 in the inner loop, and hence the denomination
c0 = 1. We have 1 = ci ≤ 2 = w and C[2] =∞ at this point, so the body of the inner
loop will also run, and will compute C[2] = 1 + C[1] = 2, and P [1] = 1. Then our
inner loop will run for i = 1. Since 5 = c2 > 2 = w, the body of the inner loop will
not run. For the same reason, it will not run for i = 2.

For w = 3, it is not hard to see that our inner loop body will only run for i = 0. In that
case, we have 1 = c0 ≤ 3 and C[3] =∞, so we will compute C[3] = C[2] + 1 = 3. We
will also have P [3] = 0. For w = 4 the situation is similar and we compute C[4] = 4,
P [4] = 0.

For w = 5, we will have two iterations of the inner for loop. For i = 0, the loop
will calculate C[5] = 5 and P [5] = 0. For i = 1, we have 5 = c1 ≤ 5 = w and
C[0] + 1 < C[5] = 5, since C[0] = 0. This means that the loop will update C[5] = 0
and P [5] = 1. This means that for w = 5, the best way to make the value is with a
single coin of denomination c5 = 5. For w = 6, the two iterations of the inner for loop
similarly compute C[6] = 2 and P [6] = 1.

For w = 7, the inner for loop will be executed three times. When i = 0, it will compute
C[7] = 7 and P [7] = 0. When i = 1, it will compute C[7] = C[6]+1 = 3 and P [7] = 1.
When i = 2, it will compute C[7] = C[0] + 1 = 1 and P [7] = 2.

By running the algorithm, we can compute moving forward the remaining values for
C[w] and P [w] as

C[8] = 2, C[9] = 3, C[10] = 2, C[11] = 3, C[12] = 2,

C[13] = 3, C[14] = 2, C[15] = 3, C[16] = 4, C[17] = 3, C[18] = 4

P [8] = 2, P [9] = 2, P [10] = 1, P [11] = 1, P [12] = 2,

P [13] = 2, P [14] = 2, P [15] = 1, P [16] = 1, P [17] = 1, P [18] = 1
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From there, we can compute the actual solutions in the while loop of the algorithm.
For u = 18, we compute i← P [18] = 1, and then S[1] = 1 (since S[i] was initialised to
0 for all i). Our new value of v will be v− c1 = 18− 5 = 13. Now i← P [13] = 2, and
S[2] = 1. Our new value of v will be v − c2 = 13− 7 = 6. We compute i← P [6] = 1,
and S[2] = 1. Our new value of v will be v−c1 = 6−5 = 1. We compute i← P [1] = 0
and S[0] = 1. Our new value of v will be v− c0 = 0 and the while loop will terminate.
We end up with S[0] = 1, S[1] = 2, S[2] = 3, i.e., the minimum number of coins to
make the number 18 is with one 1, two fives and 1 seven, which also matches the value
C[18] = 4.

The proposed greedy algorithm does not produce an optimal solution. In particu-
lar, the algorithm would use two coins of demonination c2 = 7, and four coins of
denomination c0 = 1, to achieve a sum of 18, for a total of six coins.

4. A contiguous subsequence of length k of a sequence S is a subsequence which consists
of k consecutive elements of S. For instance, if S is 1, 2, 3,−11, 10, 6,−10, 11,−5,
then 3,−11, 10 is a contiguous subsequence of S of length 3. Give an algorithm based
on dynamic programming that, given a sequence S of n numbers as input, runs in
linear time and outputs the contiguous subsequence of S of maximum sum. Assume
that a subsequence of length 0 has sum 0. For the example above, the answer of the
algorithm would be 10, 6,−10, 11 with a sum of 17.

Solution: We will use dynamic programming to design an algorithm that solves the
contiguous subsequence problem. We will use M [j] to denote the optimal solution
(the sum of the subsequence of maximum sum) ending at position j. We will define
M [0] = 0. To choose the value of M [j] we have two options: either take the optimal
subsequence ending in position j − 1 and add the element aj , or only use the element
aj in the subsequence. The choice will be made based on the maximum of the two,
which is the first term if M [j − 1]] ≥ 0 and the second term if M [j − 1] < 0. We have
the following relation:

M [j] = max{M [j] + aj , aj},

To find the contiguous subsequence S∗ of maximum sum, we need to find the element i∗

for which M [i∗] is maximised. In dynamic programming fashion, we will calculate the
values ofM [i] for all i = 1, 2 · · · , n using the recurrence relation above and the solution
that we have computed to smaller problem. Since our array is 1-D, this calculation
can be done in O(n) time. Then we can compute the maxi∈{1,...,n} M [i] = M [i∗]. This
way we can find were the optimal subsequence ends. To find where it starts, we can
keep track of the lengths of the optimal subsequences. If we let L[i] denote the length
of the optimal subsequence ending at position i, we have that

L[i] =

{
L[i− 1] + 1, if M [i− 1] ≥ 0

1, if M [i− 1] < 0

Note that the conditions in the two cases above are exactly those that determine the
value of M [j] = max{M [j] + aj , aj}.
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