Informatics 2 – Introduction to Algorithms and Data Structures

Tutorial 7 - Dynamic Programming

1. Consider the weighted directed graph G = (V, E) of Figure 1. Run the Bellman-Ford algorithm to compute the value of M[i, v] for every node $x \in V$. Recall that M[i, v] is the cost of the minimum-cost $v \sim t$ path that uses at most *i* edges.

Figure 1: A directed graph with edge costs indicated. Algorithms Iluminated Example 18.2.6.

SOLUTION: We run the algorithm referring to the pseudocode presented in Lecture 20. In the initialisation step, we have M[0,t] = 0 and $M[0,x] = \infty$ for every other node $x \in V \setminus \{t\}$. Then we enter the nested for loops.

• Let i = 1. We consider the nodes one by one and compute M[1, x] for each one of them. For this, we use the following recurrence relation

$$M[1, x] = \min\{M[0, x] + \min_{y \in N(x)} c_{xy} + M[0, y]\},\$$

where N(x) is the set of nodes that are reachable from x via a single edge. In our calculation, we observe that $M[0, x] = \infty$ for every node $x \in V \setminus \{t\}$. Therefore the nodes for which $M[1, x] \neq \infty$ (besides t) will be nodes v and w, which can reach t via a single edge. In other words, we have

$$M[1,s] = M[1,u] = \infty, M[1,t] = 0$$

For M[1, v] we calculate the minimum of the expression as $M[1, v] = c_{vt} + M[0, t] = 4$. Similarly, for M[1, w] we calculate $M[1, w] = c_{wt} + M[0, t] = 2$.

• Let i = 2. We consider the nodes one by one and compute M[2, x] for each one of them. For this, we use the following recurrence relation

$$M[2, x] = \min\{M[1, x] + \min_{y \in N(x)} c_{xy} + M[1, y]\}.$$

We calculate

$$\begin{split} M[2,s] &= \min\{M[1,s] + \min_{y \in N(s)} c_{sy} + M[1,y]\} = c_{sv} + M[1,v] = 4 + 4 = 8\\ M[2,v] &= \min\{M[1,v] + \min_{y \in N(v)} c_{vy} + M[1,y]\} = M[1,v] = 4\\ M[2,u] &= \min\{M[1,u] + \min_{y \in N(u)} c_{uy} + M[1,y]\} = c_{uv} + M[1,v] = -1 + 4 = 3\\ M[2,w] &= \min\{M[1,w] + \min_{y \in N(w)} c_{wy} + M[1,y]\} = M[1,w] = 2\\ M[2,t] &= 0 \end{split}$$

• Let i = 3. We consider the nodes one by one and compute M[3, x] for each one of them. For this, we use the following recurrence relation

$$M[3, x] = \min\{M[2, x] + \min_{y \in N(x)} c_{xy} + M[2, y]\}.$$

Similarly to above we calculate

$$\begin{split} M[3,s] &= \min\{M[2,s] + \min_{y \in N(s)} c_{sy} + M[2,y]\} = c_{su} + M[1,u] = 2 + 3 = 5 \\ M[3,v] &= \min\{M[2,v] + \min_{y \in N(v)} c_{vy} + M[2,y]\} = M[2,v] = 4 \\ M[3,u] &= \min\{M[2,u] + \min_{y \in N(u)} c_{uy} + M[2,y]\} = M[2,u] = 3 \\ M[3,w] &= \min\{M[2,w] + \min_{y \in N(w)} c_{wy} + M[2,y]\} = M[2,w] = 2 \\ M[3,t] &= 0 \end{split}$$

• Let i = 4. We consider the nodes one by one and compute M[3, x] for each one of them. For this, we use the following recurrence relation

$$M[4, x] = \min\{M[3, x] + \min_{y \in N(x)} c_{xy} + M[3, y]\}.$$

It is not hard to see that in this case we will have M[4, x] = M[3, x] for all $x \in V$. In the end, the 2D array M looks as follows.

	0	1	2	3	4
s	∞	∞	8	5	5
u	∞	∞	3	3	3
v	∞	4	4	4	4
w	∞	2	2	2	2
t	0	0	0	0	0

2. Assume that we wanted to use the Bellman-Ford algorithm to find the cost of the minimum-cost paths from a node s to all the nodes $x \in V$ in the graph G. Think about how to modify the algorithm to achieve this and run the modified algorithm on the graph of Figure 1 to compute the costs of all the minimum-cost paths from s to the nodes in V.

Solution: The modification that we need to make is that now M[i, x] will denote the cost of the minimum-cost path from node s to node $x \in V$ that uses at most i edges. In our initialisation step, we will have M[0, s] = 0 and $M[0, x] = \infty$ for every node $x \in V \setminus \{s\}$. Our recurrence relation will still be

$$M[i,x] = \min\{M[i-1,x] + \min_{y \in N^{-}(x)} c_{yx} + M[i-1,y]\},\$$

where now $N^{-}(x)$ denotes the set of nodes y for which there is an edge $(y, x) \in E$.

If we run the algorithm on the graph of Figure 1, we get the following 2D array M:

	0	1	2	3	4
s	0	0	0	0	0
u	∞	2	2	2	2
v	∞	4	1	1	1
w	∞	∞	4	4	4
t	∞	∞	8	5	5

3. Consider the knapsack problem given by the following table, with capacity W = 7.

Item	Value	Weight
1	1	1
2	2	3
3	3	2
4	4	5
5	5	5

Use the dynamic programming algorithm presented in the lectures to compute the value of the optimal solution.

Solution: Recall that we will use a 2D array for which the entry M[i, w] will correspond to the optimal solution using the first *i* intervals and capacity *w*. For the capacities *w*, we will consider all of the integers that are at most W = 7, i.e., $\{0, 1, 2, 3, 4, 5, 6, 7\}$.

Our algorithm first sets M[0, w] = 0 for all $w \in \{1, ..., 7\}$. This results in our partially filled 2D array looking like:

Then we run the first outer loop, for i = 1, and calculate the value of M[1, w] for every $w \in \{1, ..., 7\}$. For that, we use the recurrence relation:

$$M[1, w] = \max\{M[0, w], v_i + M[0, w - w_i]\},\$$

if $w_i > w$ (i.e., the item fits), otherwise we set M[1, w] = M[0, w]. Let's run this iteration explicitly:

5								
4								
3								
2								
1								
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

M[1,0] = M[0,0] since $w_1 > 0$. When considering w = 1, the item now fits, as $w_1 = 1$. Therefore we have to check the recurrence relation. We have that M[0,1] = M[0,0] = 0, so the maximum is given by the second term and is equal to $v_i = 1$. Therefore we have M[1,1] = 1. Similarly, for M[1,2] we have that M[0,2] = M[0,1] = 0, and the maximum is given again by the second term. We again have M[1,2] = 1. Similarly, we calculate M[1,x] = 1 for all $x \in \{1,\ldots,7\}$. Using this, we can populate our 2D array as follows:

5								
4								
3								
2								
1	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

Now let's consider the next iteration, when i = 2. We calculate the value of M[2, w] for every $w \in \{1, \ldots, 7\}$. For that, we use the recurrence relation:

$$M[2, w] = \max\{M[1, w], v_i + M[1, w - w_i]\},\$$

if $w_i > w$ (i.e., the item fits), otherwise we set M[2, w] = M[1, w]. Let's also run this iteration explicitly: For w = 0, w = 1 or w = 2, we see that $3 = w_2 > w$, so for those cases we will have M[2, x] = M[1, x] for $x \in \{0, 1, 2\}$. This means that M[2, 0] = 0 and M[2, 1] = M[2, 2] = 1. For w = 3, we now have $w_2 = w$, and we can use the recurrence relation. We have that M[1, 3] = 1 and $v_2 + M[1, 0] = 2 + 0$, so we will have M[2, 3] = 2. For w = 4, we have M[1, 4] = 1 and $v_2 + M[1, 1] = 2 + 1 = 3$, so we have M[2, 4] = 3. Continuing like this, we can compute M[2, x] = 3 for all $x \in \{5, 6, 7\}$. Using this, we can populate our 2D array as follows:

5								
4								
3								
2	0	1	1	2	3	3	3	3
1	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

Continuing like this, in the end we complete our 2D array:

5	0	1	3	4	4	5	6	8
4	0	1	3	4	4	5	6	7
3	0	1	3	4	4	5	6	6
2	0	1	1	2	3	3	3	3
1	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

4. Recall the following simple context-free grammar for arithmetic expressions from Lecture 21. The start symbol is Exp.

(a) How many syntax trees are there for each of the following three strings? Draw them all.

$$3 + x * y$$
 $3 + (x * y)$ $z + 10$

(b) Design a new context-free grammar that generates exactly the same language as the one above, but with the property that it is *unambiguous*: every string in the language should have exactly one syntax tree. Informally, your grammar should enforce the familiar convention that * takes precedence over +. You will find it helpful to introduce some additional non-terminal symbols.

[Hint: First try to do this for the grammar with the rule for Exp * Exp omitted. To ensure that a string like 3 + 4 + 5 has only one tree, you might want to draw inspiration from the grammar for comma-separated lists in Lecture 21. Then try to adapt your grammar to cater for *, building in the precedence rule.]

(c) For the grammar you have designed in part (b), draw the *unique* syntax tree for any of the strings from part (a) that had more than one syntax tree with respect to the original grammar.

SOLUTION:

1. (a) $3 + x^* y$ has two trees:

 $z\,+\,10$ has no trees. This is not a sentence of the language: our grammar doesn't cater for multi-digit numerals like 10.

(b) First for the grammar with the clause for * omitted: The key observation is that a general expression is a list of one or more 'simple expressions', separated by +. Drawing inspiration from the comma list example, the following grammar does the trick:

Exp	\rightarrow	SimpleExp PlusList
SimpleExp	\rightarrow	$Var \ \ Num \ \ (\ Exp \)$
PlusList	\rightarrow	$\epsilon ~ ~ + {\sf SimpleExp} ~{\sf PlusList}$

(with the same rules for Var and Num as before). Intuitively, we here distinguish two 'levels' of expressions, corresponding to Exp and $\mathsf{SimpleExp}$. To cater for * as

well, and to enforce the precedence rule, we can extend this idea to allow three levels:

(plus the usual Var and Num rules). Other solutions are possible, but the above grammar turns out to be particularly well-adapted to 'left-to-right parsing'.)

(c) The unique syntax tree for 3 + x * y is now:

Here we include explicit ϵ 's for clarity, though of course they contribute nothing to the string in question.