Informatics 2 - Introduction to Algorithms and Data Structures

Tutorial 7 - Dynamic Programming

1. Consider the weighted directed graph $G=(V, E)$ of Figure 1. Run the Bellman-Ford algorithm to compute the value of $M[i, v]$ for every node $x \in V$. Recall that $M[i, v]$ is the cost of the minimum-cost $v \sim t$ path that uses at most i edges.

Figure 1: A directed graph with edge costs indicated. Algorithms Iluminated Example 18.2.6.

SOLUTION: We run the algorithm referring to the pseudocode presented in Lecture 20. In the initialisation step, we have $M[0, t]=0$ and $M[0, x]=\infty$ for every other node $x \in V \backslash\{t\}$. Then we enter the nested for loops.

- Let $i=1$. We consider the nodes one by one and compute $M[1, x]$ for each one of them. For this, we use the following recurrence relation

$$
M[1, x]=\min \left\{M[0, x]+\min _{y \in N(x)} c_{x y}+M[0, y]\right\},
$$

where $N(x)$ is the set of nodes that are reachable from x via a single edge. In our calculation, we observe that $M[0, x]=\infty$ for every node $x \in V \backslash\{t\}$. Therefore the nodes for which $M[1, x] \neq \infty$ (besides t) will be nodes v and w, which can reach t via a single edge. In other words, we have

$$
M[1, s]=M[1, u]=\infty, M[1, t]=0
$$

For $M[1, v]$ we calculate the minimum of the expression as $M[1, v]=c_{v t}+$ $M[0, t]=4$. Similarly, for $M[1, w]$ we calculate $M[1, w]=c_{w t}+M[0, t]=2$.

- Let $i=2$. We consider the nodes one by one and compute $M[2, x]$ for each one of them. For this, we use the following recurrence relation

$$
M[2, x]=\min \left\{M[1, x]+\min _{y \in N(x)} c_{x y}+M[1, y]\right\} .
$$

We calculate

$$
\begin{aligned}
& M[2, s]=\min \left\{M[1, s]+\min _{y \in N(s)} c_{s y}+M[1, y]\right\}=c_{s v}+M[1, v]=4+4=8 \\
& M[2, v]=\min \left\{M[1, v]+\min _{y \in N(v)} c_{v y}+M[1, y]\right\}=M[1, v]=4 \\
& M[2, u]=\min \left\{M[1, u]+\min _{y \in N(u)} c_{u y}+M[1, y]\right\}=c_{u v}+M[1, v]=-1+4=3 \\
& M[2, w]=\min \left\{M[1, w]+\min _{y \in N(w)} c_{w y}+M[1, y]\right\}=M[1, w]=2 \\
& M[2, t]=0
\end{aligned}
$$

- Let $i=3$. We consider the nodes one by one and compute $M[3, x]$ for each one of them. For this, we use the following recurrence relation

$$
M[3, x]=\min \left\{M[2, x]+\min _{y \in N(x)} c_{x y}+M[2, y]\right\}
$$

Similarly to above we calculate

$$
\begin{aligned}
& M[3, s]=\min \left\{M[2, s]+\min _{y \in N(s)} c_{s y}+M[2, y]\right\}=c_{s u}+M[1, u]=2+3=5 \\
& M[3, v]=\min \left\{M[2, v]+\min _{y \in N(v)} c_{v y}+M[2, y]\right\}=M[2, v]=4 \\
& M[3, u]=\min \left\{M[2, u]+\min _{y \in N(u)} c_{u y}+M[2, y]\right\}=M[2, u]=3 \\
& M[3, w]=\min \left\{M[2, w]+\min _{y \in N(w)} c_{w y}+M[2, y]\right\}=M[2, w]=2 \\
& M[3, t]=0
\end{aligned}
$$

- Let $i=4$. We consider the nodes one by one and compute $M[3, x]$ for each one of them. For this, we use the following recurrence relation

$$
M[4, x]=\min \left\{M[3, x]+\min _{y \in N(x)} c_{x y}+M[3, y]\right\}
$$

It is not hard to see that in this case we will have $M[4, x]=M[3, x]$ for all $x \in V$. In the end, the $2 D$ array M looks as follows.

	0	1	2	3	4
s	∞	∞	8	5	5
u	∞	∞	3	3	3
v	∞	4	4	4	4
w	∞	2	2	2	2
t	0	0	0	0	0

2. Assume that we wanted to use the Bellman-Ford algorithm to find the cost of the minimum-cost paths from a node s to all the nodes $x \in V$ in the graph G. Think about how to modify the algorithm to achieve this and run the modified algorithm on the graph of Figure 1 to compute the costs of all the minimum-cost paths from s to the nodes in V.
Solution: The modification that we need to make is that now $M[i, x]$ will denote the cost of the minimum-cost path from node s to node $x \in V$ that uses at most i edges. In our initialisation step, we will have $M[0, s]=0$ and $M[0, x]=\infty$ for every node $x \in V \backslash\{s\}$. Our recurrence relation will still be

$$
M[i, x]=\min \left\{M[i-1, x]+\min _{y \in N^{-}(x)} c_{y x}+M[i-1, y]\right\},
$$

where now $N^{-}(x)$ denotes the set of nodes y for which there is an edge $(y, x) \in E$.

If we run the algorithm on the graph of Figure 1, we get the following $2 D$ array M :

	0	1	2	3	4
s	0	0	0	0	0
u	∞	2	2	2	2
v	∞	4	1	1	1
w	∞	∞	4	4	4
t	∞	∞	8	5	5

3. Consider the knapsack problem given by the following table, with capacity $W=7$.

Item	Value	Weight
1	1	1
2	2	3
3	3	2
4	4	5
5	5	5

Use the dynamic programming algorithm presented in the lectures to compute the value of the optimal solution.
Solution: Recall that we will use a $2 D$ array for which the entry $M[i, w]$ will correspond to the optimal solution using the first i intervals and capacity w. For the capacities w, we will consider all of the integers that are at most $W=7$, i.e., $\{0,1,2,3,4,5,6,7\}$.
Our algorithm first sets $M[0, w]=0$ for all $w \in\{1, \ldots, 7\}$. This results in our partially filled $2 D$ arrray looking like:
Then we run the first outer loop, for $i=1$, and calculate the value of $M[1, w]$ for every $w \in\{1, \ldots 7\}$. For that, we use the recurrence relation:

$$
M[1, w]=\max \left\{M[0, w], v_{i}+M\left[0, w-w_{i}\right]\right\}
$$

if $w_{i}>w$ (i.e., the item fits), otherwise we set $M[1, w]=M[0, w]$. Let's run this iteration explicitly:

$\mathbf{5}$								
$\mathbf{4}$								
$\mathbf{3}$								
$\mathbf{2}$								
$\mathbf{1}$								
$\mathbf{0}$	0	0	0	0	0	0	0	0
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

$M[1,0]=M[0,0]$ since $w_{1}>0$. When considering $w=1$, the item now fits, as $w_{1}=1$. Therefore we have to check the recurrence relation. We have that $M[0,1]=M[0,0]=$ 0 , so the maximum is given by the second term and is equal to $v_{i}=1$. Therefore we have $M[1,1]=1$. Similarly, for $M[1,2]$ we have that $M[0,2]=M[0,1]=0$, and the maximum is given again by the second term. We again have $M[1,2]=1$. Similarly, we calculate $M[1, x]=1$ for all $x \in\{1, \ldots 7\}$. Using this, we can populate our $2 D$ array as follows:

$\mathbf{5}$								
$\mathbf{4}$								
$\mathbf{3}$								
$\mathbf{2}$								
$\mathbf{1}$	0	1	1	1	1	1	1	1
$\mathbf{0}$	0	0	0	0	0	0	0	0
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Now let's consider the next iteration, when $i=2$. We calculate the value of $M[2, w]$ for every $w \in\{1, \ldots 7\}$. For that, we use the recurrence relation:

$$
M[2, w]=\max \left\{M[1, w], v_{i}+M\left[1, w-w_{i}\right]\right\}
$$

if $w_{i}>w$ (i.e., the item fits), otherwise we set $M[2, w]=M[1, w]$. Let's also run this iteration explicitly: For $w=0, w=1$ or $w=2$, we see that $3=w_{2}>w$, so for those cases we will have $M[2, x]=M[1, x]$ for $x \in\{0,1,2\}$. This means that $M[2,0]=0$ and $M[2,1]=M[2,2]=1$. For $w=3$, we now have $w_{2}=w$, and we can use the recurrence relation. We have that $M[1,3]=1$ and $v_{2}+M[1,0]=2+0$, so we will have $M[2,3]=2$. For $w=4$, we have $M[1,4]=1$ and $v_{2}+M[1,1]=2+1=3$, so we have $M[2,4]=3$. Continuing like this, we can compute $M[2, x]=3$ for all $x \in\{5,6,7\}$. Using this, we can populate our $2 D$ array as follows:

$\mathbf{5}$								
$\mathbf{4}$								
$\mathbf{3}$								
$\mathbf{2}$	0	1	1	2	3	3	3	3
$\mathbf{1}$	0	1	1	1	1	1	1	1
$\mathbf{0}$	0	0	0	0	0	0	0	0
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Continuing like this, in the end we complete our $2 D$ array:

$\mathbf{5}$	0	1	3	4	4	5	6	8
$\mathbf{4}$	0	1	3	4	4	5	6	7
$\mathbf{3}$	0	1	3	4	4	5	6	6
$\mathbf{2}$	0	1	1	2	3	3	3	3
$\mathbf{1}$	0	1	1	1	1	1	1	1
$\mathbf{0}$	0	0	0	0	0	0	0	0
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

4. Recall the following simple context-free grammar for arithmetic expressions from Lecture 21. The start symbol is Exp.

$$
\begin{aligned}
\text { Exp } & \rightarrow \text { Var } \mid \text { Num } \mid \text { (Exp }) \\
\operatorname{Exp} & \rightarrow \operatorname{Exp}+\operatorname{Exp} \\
\operatorname{Exp} & \rightarrow \operatorname{Exp} * \operatorname{Exp} \\
\text { Var } & \rightarrow x|y| z \\
\text { Num } & \rightarrow 0|\cdots| 9
\end{aligned}
$$

(a) How many syntax trees are there for each of the following three strings? Draw them all.

$$
3+x * y \quad 3+(x * y) \quad z+10
$$

(b) Design a new context-free grammar that generates exactly the same language as the one above, but with the property that it is unambiguous: every string in the language should have exactly one syntax tree. Informally, your grammar should enforce the familiar convention that * takes precedence over + . You will find it helpful to introduce some additional non-terminal symbols.
[Hint: First try to do this for the grammar with the rule for Exp * Exp omitted. To ensure that a string like $3+4+5$ has only one tree, you might want to draw inspiration from the grammar for comma-separated lists in Lecture 21. Then try to adapt your grammar to cater for ${ }^{*}$, building in the precedence rule.]
(c) For the grammar you have designed in part (b), draw the unique syntax tree for any of the strings from part (a) that had more than one syntax tree with respect to the original grammar.

SOLUTION:

1. (a) $3+\mathrm{x} * \mathrm{y}$ has two trees:

$3+(x * y)$ has just one tree:

$z+10$ has no trees. This is not a sentence of the language: our grammar doesn't cater for multi-digit numerals like 10 .
(b) First for the grammar with the clause for $*$ omitted: The key observation is that a general expression is a list of one or more 'simple expressions', separated by + . Drawing inspiration from the comma list example, the following grammar does the trick:

$$
\begin{aligned}
\text { Exp } & \rightarrow \text { SimpleExp PlusList } \\
\text { SimpleExp } & \rightarrow \text { Var } \mid \text { Num } \mid \text { (Exp) } \\
\text { PlusList } & \rightarrow \epsilon \mid+ \text { SimpleExp PlusList }
\end{aligned}
$$

(with the same rules for Var and Num as before). Intuitively, we here distinguish two 'levels' of expressions, corresponding to Exp and SimpleExp. To cater for $*$ as
well, and to enforce the precedence rule, we can extend this idea to allow three levels:

$$
\begin{aligned}
\text { Exp } & \rightarrow \text { Exp1 PlusList } \\
\text { Exp1 } & \rightarrow \text { SimpleExp TimesList } \\
\text { SimpleExp } & \rightarrow \text { Var } \mid \text { Num | (Exp) } \\
\text { TimesList } & \rightarrow \epsilon \mid * \text { SimpleExp TimesList } \\
\text { PlusList } & \rightarrow \epsilon \mid+ \text { Exp1 PlusList }
\end{aligned}
$$

(plus the usual Var and Num rules). Other solutions are possible, but the above grammar turns out to be particularly well-adapted to 'left-to-right parsing'.)
(c) The unique syntax tree for $3+x * y$ is now:

Here we include explicit ϵ 's for clarity, though of course they contribute nothing to the string in question.

