
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 7 - Dynamic Programming

1. Consider the weighted directed graph G = (V,E) of Figure 1. Run the Bellman-Ford
algorithm to compute the value of M [i, v] for every node x ∈ V . Recall that M [i, v]
is the cost of the minimum-cost v ∼ t path that uses at most i edges.

Figure 1: A directed graph with edge costs indicated. Algorithms Iluminated Example
18.2.6.

2. Assume that we wanted to use the Bellman-Ford algorithm to find the cost of the
minimum-cost paths from a node s to all the nodes x ∈ V in the graph G. Think
about how to modify the algorithm to achieve this and run the modified algorithm on
the graph of Figure 1 to compute the costs of all the minimum-cost paths from s to
the nodes in V .

3. Consider the knapsack problem given by the following table, with capacity W = 7.

Item Value Weight
1 1 1
2 2 3
3 3 2
4 4 5
5 5 5

1

Use the dynamic programming algorithm presented in the lectures to compute the
value of the optimal solution.

4. Recall the following simple context-free grammar for arithmetic expressions from Lec-
ture 21. The start symbol is Exp.

Exp → Var | Num | (Exp)

Exp → Exp + Exp

Exp → Exp ∗ Exp

Var → x | y | z

Num → 0 | · · · | 9

(a) How many syntax trees are there for each of the following three strings? Draw
them all.

3 + x ∗ y 3 + (x ∗ y) z + 10

(b) Design a new context-free grammar that generates exactly the same language as
the one above, but with the property that it is unambiguous: every string in the
language should have exactly one syntax tree. Informally, your grammar should
enforce the familiar convention that * takes precedence over +. You will find it
helpful to introduce some additional non-terminal symbols.

[Hint: First try to do this for the grammar with the rule for Exp ∗ Exp omitted.
To ensure that a string like 3 + 4 + 5 has only one tree, you might want to draw
inspiration from the grammar for comma-separated lists in Lecture 21. Then try
to adapt your grammar to cater for *, building in the precedence rule.]

(c) For the grammar you have designed in part (b), draw the unique syntax tree for
any of the strings from part (a) that had more than one syntax tree with respect
to the original grammar.

2

