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So far…

• We were given a problem A that we want to solve.

• We came up with an algorithm ALGA that solves it.

• We argued about the correctness of ALGA (sometimes).

• We argued about its running time.
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Efficient algorithms

• An algorithm is typically called efficient if it runs in 
polynomial time.

• If we were not interested in efficiency, we could solve all 
of these problems in exponential time  using brute 
force.

O(cn)

• If its possible to design an efficient algorithm for a 
problem, we shouldn’t be satisfied with brute force.



Efficient algorithms



Efficient algorithms

• Is it possible to design a polynomial-time algorithm for 
every problem?



Efficient algorithms

• Is it possible to design a polynomial-time algorithm for 
every problem?

• Are there problems for which polynomial-time algorithms 
do not exist?
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Polynomial Time Reduction

• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other 
problem B.

• Assume that we had an algorithm ALGB for solving problem B.

• We can construct an algorithm ALGA for solving problem A, 
which uses calls to the algorithm ALGB  as a subroutine.

• If ALGA is a polynomial time algorithm, then this is a 
polynomial time reduction.
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Notation

• When problem A reduces to problem B in polynomial 
time, we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A 
to B”.
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How to work with reductions

• Positive: Assume that I want to solve problem A and I know how 
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B, 
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.



Types of reductions

• Turing reduction: 

• Notation: A ≤T B


• A reduction which solves problem A using 
(polynomially) many calls to an oracle (an algorithm) for 
solving problem B.


• (Also known as Cook reduction).
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Types of reductions
• Turing reduction: 

• Notation: A ≤T B


• A reduction which solves problem A using (polynomially) many calls to an 
oracle (an algorithm) for solving problem B.


• (Also known as Cook reduction).


• Many-one reduction: 

• Notation: A ≤m B


• A reduction which converts instances of problem A to instances of problem B.


• (Also known as Karp reduction).
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Types of reductions
• Turing reduction: 

• Argument: Here is an algorithm which runs in polynomial time solving problem 
A, using polynomially many calls to an oracle for problem B.


• Many-one reduction: 

• Argument: 


• If z is a solution to instance I of problem A, then z’ is a solution of instance 
f(I) to problem B.


• If z is not a solution to instance I of problem A, then z’ is not a solution of 
instance f(I) to problem B.


• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a 
solution to instance I of problem A.



Examples of reductions?





Deciding bipartiteness



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.

• And how did we solve that?



Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.

• And how did we solve that?

• We reduced it to checking whether BFS colours two 
adjacent nodes with the same colour. 



–Johnny Appleseed

“Type a quote here.” 

Directed Acyclic Graphs 
• A directed acyclic graph (DAG) G is a graph that does not 

have any cycles. 
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Topological Ordering
• Given a directed graph G, a topological ordering of G is 

an ordering of the nodes u1, u2, … , un, such that for every 
edge e=(ui, uj), it holds that i < j.

• Intuitively, a topological ordering orders the nodes in a 
way such that all edges point “forward”.
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Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

• Given a graph G, decide if it has a topological ordering.

• We reduced the problem to deciding whether the graph has 
a topological ordering.

• And how can we solve that?

• We can develop an algorithm that finds a topological 
ordering, or returns that there is none.
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Computational classes

• Every problem for which there is a known polynomial time 
algorithm is in the computational class P.


• Searching, sorting, interval scheduling, graph traversal, 
… 


• The class P contains computational problems that can 
be solved in polynomial time.


• We also say that they can be solved efficiently.
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Problems not in P

• Do you remember any problems from the lectures that we 
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

• Knapsack?



The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.
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The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine. 

• More intuitive definition: 

• Problems such that, if a solution is given, it can be 
checked that it is indeed a solution in polynomial time.

• Efficiently verifiable.



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Select a subset S of the items such that  
 
and                 is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi



Equivalent formulation

decision version

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Decide if there exists a subset S of the items such 
that 

∑
i∈S

wi = W



Subset Sum is in NP

• If we are given a candidate solution S, we can easily 
check whether the following holds or not:

∑
i∈S

wi = W
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Problem classification

• Problems in P:


• Searching, sorting, minimum spanning tree, graph 
traversal, Weighted Interval Scheduling, …


• Problems in NP:


• Subset Sum, Knapsack, Weighted Interval Scheduling, 
searching, sorting, graph traversal, Weighted Interval 
Scheduling, …
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The landscape of complexity

    NP P

contains all problems that 
can be solved in polynomial time.

contains all problems for which 
a solution can be verified in  

polynomial time.
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• I can try to come up with a polynomial time reduction A ≤p B, 
which will give me a polynomial time algorithm for solving A.


• Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.


• If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.


• B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.



NP-hardness
• A problem B is NP-hard if for every problem A in NP, it holds 

that A ≤p B.


• If every problem in NP is “polynomial time reducible to B”.


• This captures the fact that B is at least as hard as the 
hardest problems in NP.



NP-hardness

• A problem B is NP-hard if for every problem A in NP, it 
holds that A ≤p B.


• To prove NP-hardness, it seems that we have to construct 
a reduction from every problem A in NP. 


• This is not very useful! 
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NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

• i.e., every problem in NP can be efficiently reduced 
to it.



NP-completeness



NP-completeness
• Assume problem P is NP-complete.



NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P. 
(why?)



NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P. 
(why?)

• To prove NP-hardness of problem B, it seems that we 
have to construct a reduction from every problem A in NP. 



NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P. 
(why?)

• To prove NP-hardness of problem B, it seems that we 
have to construct a reduction from every problem A in NP. 

• Actually, it suffices to construct a reduction from P to B.



NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P. 
(why?)

• To prove NP-hardness of problem B, it seems that we 
have to construct a reduction from every problem A in NP. 

• Actually, it suffices to construct a reduction from P to B.

• A reduction from any other problem A to B goes “via” P.



NP-hardness via P
Problem A1 Problem P Problem B

Problem A2

Problem Ak
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NP-completeness

• Assume problem P is NP-complete.

• This all works if we have an NP-complete problem to start 
with.
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3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

• Remarks: 


• The first problem shown to be NP-complete was the SAT 
problem (more general than 3 SAT), and this reduces to 
3SAT.


• Several textbooks start from Circuit SAT, a version of the 
SAT problem defined on circuits with boolean gates AND, 
OR or NOT. 
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In fact … 
• Suppose that you are given a problem A and you want to 

prove that it is NP-complete.


• First, prove that A is in NP.


• Usually by observing that a solution is efficiently 
checkable.


• Then prove that A is NP-hard.


• Construct a polynomial time reduction from some NP-
hard problem P.
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Enough with the definitions. 
Let’s see how it works.

Next time!


