Introduction to Algorithms and Data Structures

Introduction to NP-completeness

• We were given a problem A that we want to solve.

- We were given a problem A that we want to solve.
- We came up with an algorithm ALG^A that solves it.

- We were given a problem A that we want to solve.
- We came up with an algorithm ALG^A that solves it.
- We argued about the correctness of ALG^A (sometimes).

- We were given a problem A that we want to solve.
- We came up with an algorithm ALG^A that solves it.
- We argued about the correctness of ALG^A (sometimes).
- We argued about its running time.

Running time hierarchy

$O(\log n)$	O(n)	$O(n \log n)$	$O(n^2)$	$O(n^{lpha})$	$O(c^n)$
logarithmic	linear		quadratic	polynomial	exponential
The algorithm does not even read the whole input.	The algorithm accesses the input only a constant number of times.	The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.	The algorithm considers pairs of elements.	The algorithm performs many nested loops.	The algorithm considers many subsets of the input elements.
constant	O(1)	superlinear	$\omega(n)$		
superconstant	$\omega(1)$	superpolynomial	$\omega(n^{lpha})$		
sublinear	o(n)	subexponential	$o(c^n)$		

Running time hierarchy

Polynomial time

$O(\log n)$	O(n)	$O(n\log n)$	$O(n^2)$	$O(n^{lpha})$	$O(c^n)$
logarithmic The algorithm does not even read the whole input.	linear The algorithm accesses the input only a constant number of times.	The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.	quadratic The algorithm considers pairs of elements.	polynomial The algorithm performs many nested loops.	exponential The algorithm considers many subsets of the input elements.
constant superconstant sublinear	O(1) $\omega(1)$ o(n)	superlinear superpolynomial subexponential	$egin{array}{lll} \omega(n) \ \omega(n^{lpha}) \ o(c^n) \end{array}$		

• An algorithm is typically called *efficient* if it runs in polynomial time.

- An algorithm is typically called *efficient* if it runs in polynomial time.
- If we were not interested in efficiency, we could solve all of these problems in exponential time O(cⁿ) using brute force.

- An algorithm is typically called *efficient* if it runs in polynomial time.
- If we were not interested in efficiency, we could solve all of these problems in exponential time O(cⁿ) using brute force.
- If its possible to design an efficient algorithm for a problem, we shouldn't be satisfied with brute force.

 Is it possible to design a polynomial-time algorithm for every problem?

- Is it possible to design a polynomial-time algorithm for every problem?
- Are there problems for which polynomial-time algorithms do not exist?

Reductions

• We are given a problem A that we want to solve.

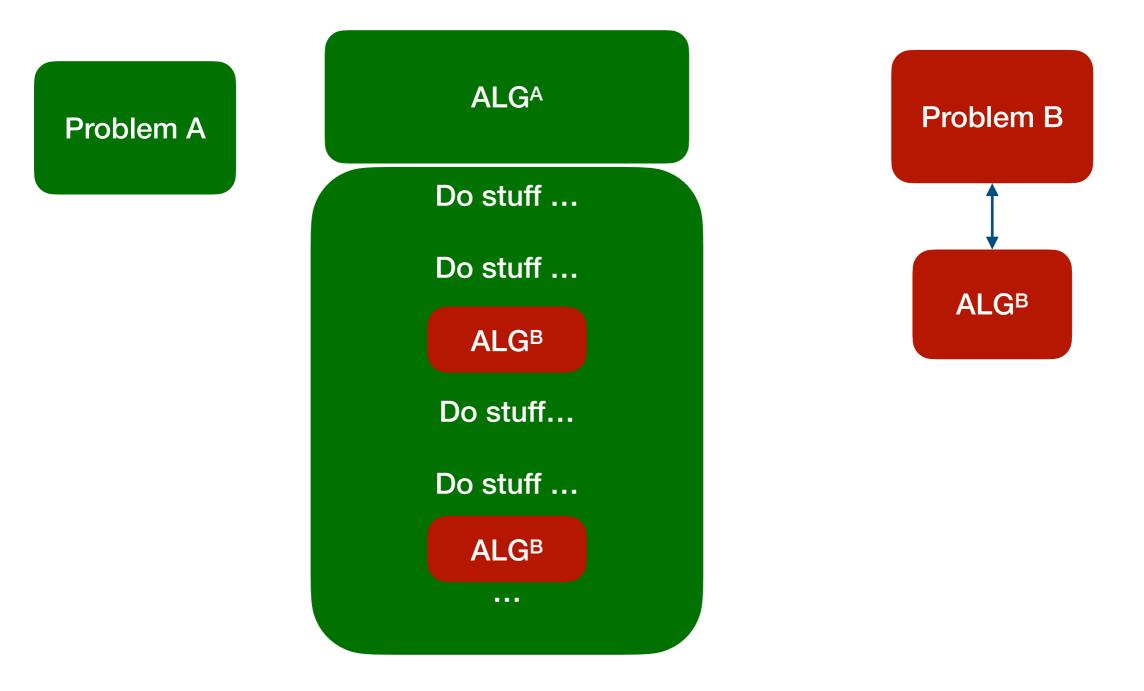
- We are given a problem A that we want to solve.
- We can *reduce* solving problem A to solving some other problem B.

- We are given a problem A that we want to solve.
- We can *reduce* solving problem A to solving some other problem B.
- Assume that we had an algorithm ALG^B for solving problem B.

- We are given a problem A that we want to solve.
- We can *reduce* solving problem A to solving some other problem B.
- Assume that we had an algorithm ALG^B for solving problem B.
- We can construct an algorithm ALG^A for solving problem A, which uses calls to the algorithm ALG^B as a subroutine.

- We are given a problem A that we want to solve.
- We can *reduce* solving problem A to solving some other problem B.
- Assume that we had an algorithm ALG^B for solving problem B.
- We can construct an algorithm ALG^A for solving problem A, which uses calls to the algorithm ALG^B as a subroutine.
- If ALG^A is a polynomial time algorithm, then this is a *polynomial time reduction*.

Pictorially



Notation

• When problem A reduces to problem B in polynomial time, we write

A ≤^p B

We often say "there is a polynomial time reduction *from* A *to* B".

• Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.

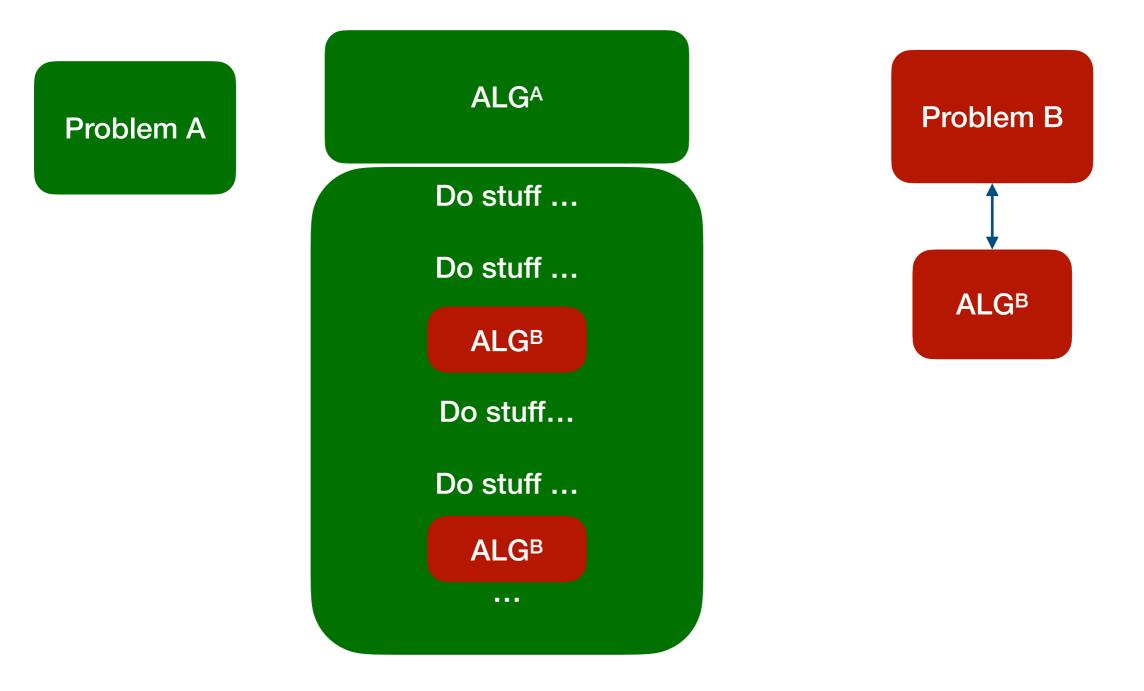
- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
 - If I come up with a polynomial time reduction A ≤^p B, it is also unlikely that there is a polynomial time algorithm that solves B.

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
 - If I come up with a polynomial time reduction A ≤^p B, it is also unlikely that there is a polynomial time algorithm that solves B.
 - B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

Types of reductions

- Turing reduction:
 - Notation: $A \leq_T B$
 - A reduction which solves problem A using (polynomially) many calls to an oracle (an algorithm) for solving problem B.
 - (Also known as Cook reduction).

Pictorially

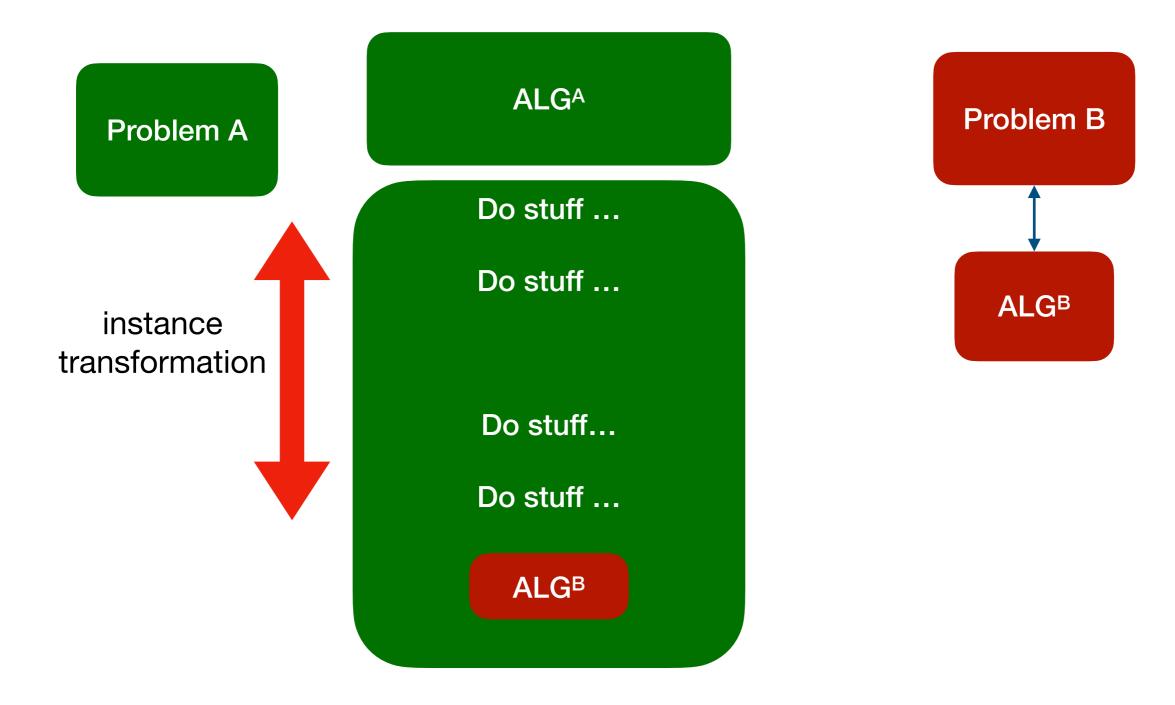


Types of reductions

• Turing reduction:

- Notation: $A \leq_T B$
- A reduction which solves problem A using (polynomially) many calls to an oracle (an algorithm) for solving problem B.
- (Also known as Cook reduction).
- Many-one reduction:
 - Notation: $A \leq_m B$
 - A reduction which *converts instances* of problem A to *instances* of problem B.
 - (Also known as Karp reduction).

Pictorially



Types of reductions

• Turing reduction:

• Argument: Here is an algorithm which runs in polynomial time solving problem A, using polynomially many calls to an oracle for problem B.

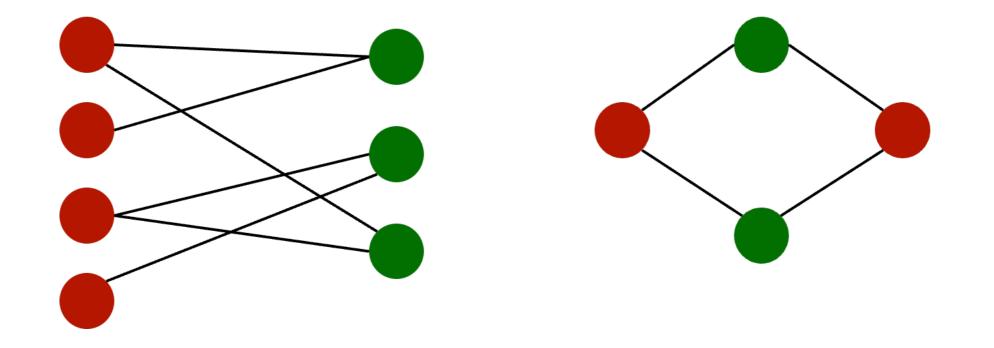
• Many-one reduction:

- Argument:
 - If z is a solution to instance I of problem A, then z' is a solution of instance f(I) to problem B.
 - If z is not a solution to instance I of problem A, then z' is not a solution of instance f(I) to problem B.
 - Equivalently: If z' is a solution of instance f(I) to problem B, then z is a solution to instance I of problem A.

Examples of reductions?

Bipartite graphs

- A graph G=(V,E) is bipartite *if any only if* it can be partitioned into sets A and B such that each edge has one endpoint in A and one endpoint in B.
 - Often, we write G=(A U B,E).



Deciding bipartiteness

• Given a graph G, *decide* if it is bipartite or not.

- Given a graph G, *decide* if it is bipartite or not.
- How did we solve this problem?

- Given a graph G, *decide* if it is bipartite or not.
- How did we solve this problem?
- Given a a graph G decide if it is 2-colourable or not.

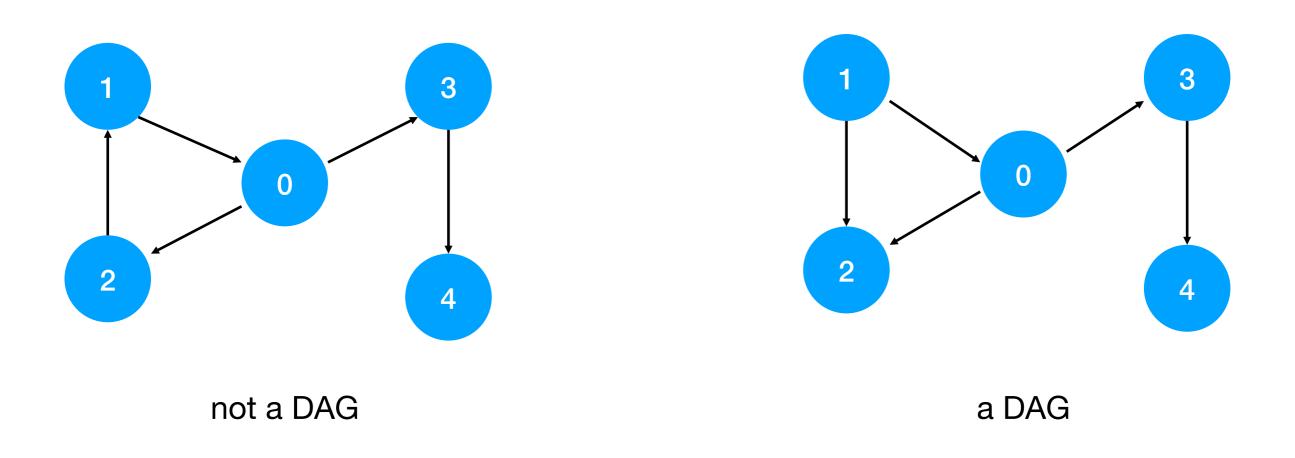
- Given a graph G, *decide* if it is bipartite or not.
- How did we solve this problem?
- Given a a graph G decide if it is 2-colourable or not.
- We reduced the problem to deciding 2-colorability.

- Given a graph G, *decide* if it is bipartite or not.
- How did we solve this problem?
- Given a a graph G decide if it is 2-colourable or not.
- We reduced the problem to deciding 2-colorability.
 - And how did we solve that?

- Given a graph G, *decide* if it is bipartite or not.
- How did we solve this problem?
- Given a a graph G decide if it is 2-colourable or not.
- We reduced the problem to deciding 2-colorability.
 - And how did we solve that?
 - We reduced it to checking whether BFS colours two adjacent nodes with the same colour.

Directed Acyclic Graphs

• A directed acyclic graph (DAG) G is a graph that does not have any cycles.



• Given a graph G, *decide* if it is a DAG.

- Given a graph G, *decide* if it is a DAG.
- How can we solve this problem?

- Given a graph G, *decide* if it is a DAG.
- How can we solve this problem?
- Given a graph G, decide if it has a topological ordering.

- Given a graph G, *decide* if it is a DAG.
- How can we solve this problem?
- Given a graph G, decide if it has a topological ordering.
- We reduced the problem to deciding whether the graph has a topological ordering.

- Given a graph G, *decide* if it is a DAG.
- How can we solve this problem?
- Given a graph G, decide if it has a topological ordering.
- We reduced the problem to deciding whether the graph has a topological ordering.
 - And how can we solve that?

- Given a graph G, *decide* if it is a DAG.
- How can we solve this problem?
- Given a graph G, decide if it has a topological ordering.
- We reduced the problem to deciding whether the graph has a topological ordering.
 - And how can we solve that?
 - We can develop an algorithm that finds a topological ordering, or returns that there is none.

Computational classes

Computational classes

Computational classes

- Every problem for which there is a known polynomial time algorithm is in the computational class P.
 - Searching, sorting, interval scheduling, graph traversal, ...
 - The class P contains computational problems that can be solved in polynomial time.
 - We also say that they can be solved *efficiently*.

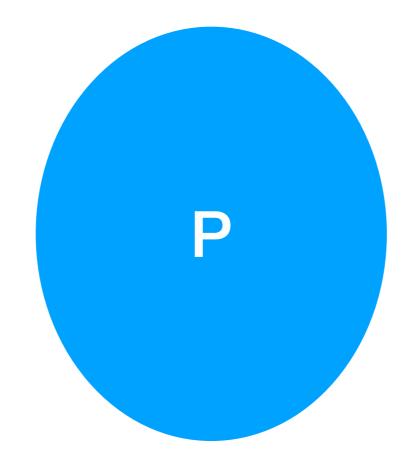
 Do you remember any problems from the lectures that we did not manage to prove that they lie in P?

- Do you remember any problems from the lectures that we did not manage to prove that they lie in P?
 - Weighted interval scheduling?

- Do you remember any problems from the lectures that we did not manage to prove that they lie in P?
 - Weighted interval scheduling?
 - Subset sum?

- Do you remember any problems from the lectures that we did not manage to prove that they lie in P?
 - Weighted interval scheduling?
 - Subset sum?
 - Knapsack?

The landscape of complexity



contains all problems that can be solved in polynomial time.

• Stands for "non deterministic polynomial time".

- Stands for "non deterministic polynomial time".
- Problems that can be solved in polynomial time by a nondeterministic Turing machine.

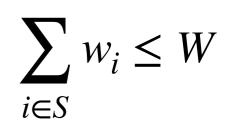
- Stands for "non deterministic polynomial time".
- Problems that can be solved in polynomial time by a nondeterministic Turing machine.
- More intuitive definition:

- Stands for "non deterministic polynomial time".
- Problems that can be solved in polynomial time by a nondeterministic Turing machine.
- More intuitive definition:
 - Problems such that, *if a solution is given*, it can be checked that it is indeed a solution in polynomial time.

- Stands for "non deterministic polynomial time".
- Problems that can be solved in polynomial time by a nondeterministic Turing machine.
- More intuitive definition:
 - Problems such that, *if a solution is given*, it can be checked that it is indeed a solution in polynomial time.
 - Efficiently verifiable.

The subset sum problem

- We are given a set of **n** items {**1**, **2**, ..., **n**}.
- Each item *i* has a non-negative integer weight w_i.
- We are given an integer bound W.
- Goal: Select a subset S of the items such that $\sum w_i \le W$



and $\sum_{i \in S} w_i$ is maximised.

Equivalent formulation decision version

- We are given a set of n items {1, 2, ..., n}.
- Each item *i* has a non-negative integer weight w_i.
- We are given an integer bound W.
- Goal: Decide if there exists a subset S of the items such that $\nabla w = W$

$$\sum_{i \in S} w_i = W$$

Subset Sum is in NP

• If we are given a candidate solution S, we can easily check whether the following holds or not:

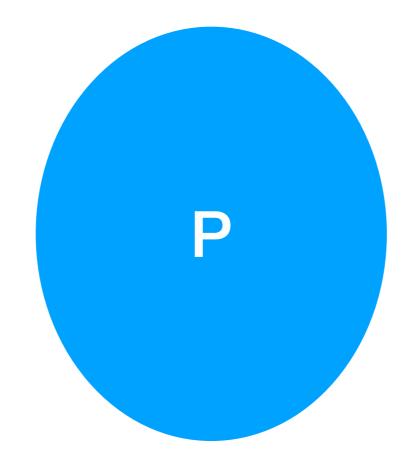
$$\sum_{i \in S} w_i = W$$

- Problems in P:
 - Searching, sorting, graph traversal, maximum flow, minimum cut, Weighted Interval Scheduling, ...

- Problems in P:
 - Searching, sorting, graph traversal, maximum flow, minimum cut, Weighted Interval Scheduling, ...
- Problems in NP:
 - Subset Sum, Knapsack

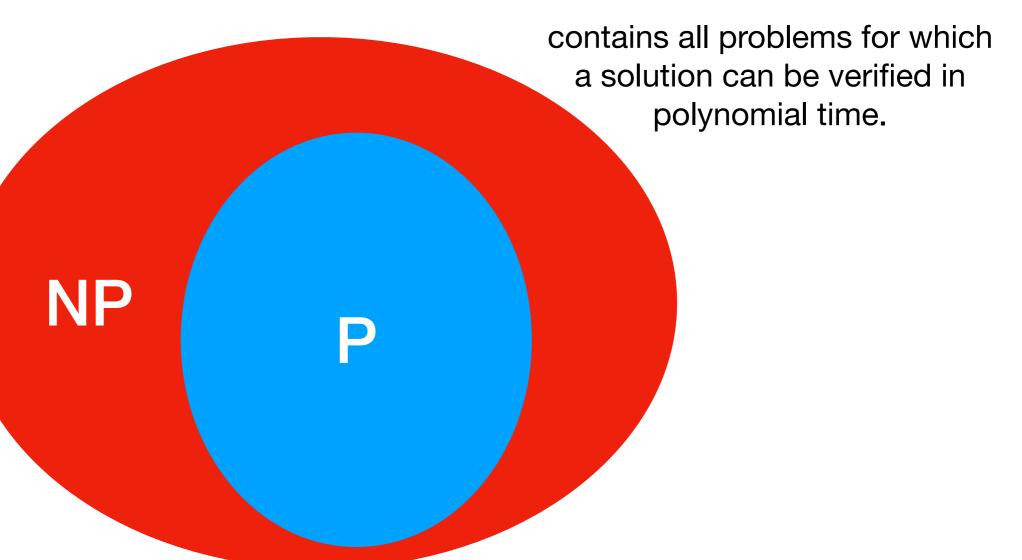
- Problems in P:
 - Searching, sorting, minimum spanning tree, graph traversal, Weighted Interval Scheduling, ...
- Problems in NP:
 - Subset Sum, Knapsack, Weighted Interval Scheduling, searching, sorting, graph traversal, Weighted Interval Scheduling, ...

The landscape of complexity



contains all problems that can be solved in polynomial time.

The landscape of complexity



contains all problems that can be solved in polynomial time.

How to work with reductions

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
 - If I come up with a polynomial time reduction A ≤^p B, it is also unlikely that there is a polynomial time algorithm that solves B.
 - B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

How to work with reductions

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction A ≤^p B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
 - If I come up with a polynomial time reduction A ≤^p B, it is also unlikely that there is a polynomial time algorithm that solves B.
 - B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

NP-hardness

- A problem B is NP-hard if for every problem A in NP, it holds that A ≤^p B.
 - If every problem in NP is "polynomial time reducible to B".
 - This captures the fact that B is at least as hard as the hardest problems in NP.

NP-hardness

- A problem B is NP-hard if for every problem A in NP, it holds that A ≤^p B.
- To prove NP-hardness, it seems that we have to construct a reduction from every problem A in NP.
 - This is not very useful!

• A problem B is NP-complete if

- A problem B is NP-complete if
 - It is in NP.

- A problem B is NP-complete if
 - It is in NP.
 - i.e., it has a polynomial-time verifiable solution.

- A problem B is NP-complete if
 - It is in NP.
 - i.e., it has a polynomial-time verifiable solution.
 - It is NP-hard.

- A problem B is NP-complete if
 - It is in NP.
 - i.e., it has a polynomial-time verifiable solution.
 - It is NP-hard.
 - i.e., every problem in NP can be efficiently reduced to it.

• Assume problem P is NP-complete.

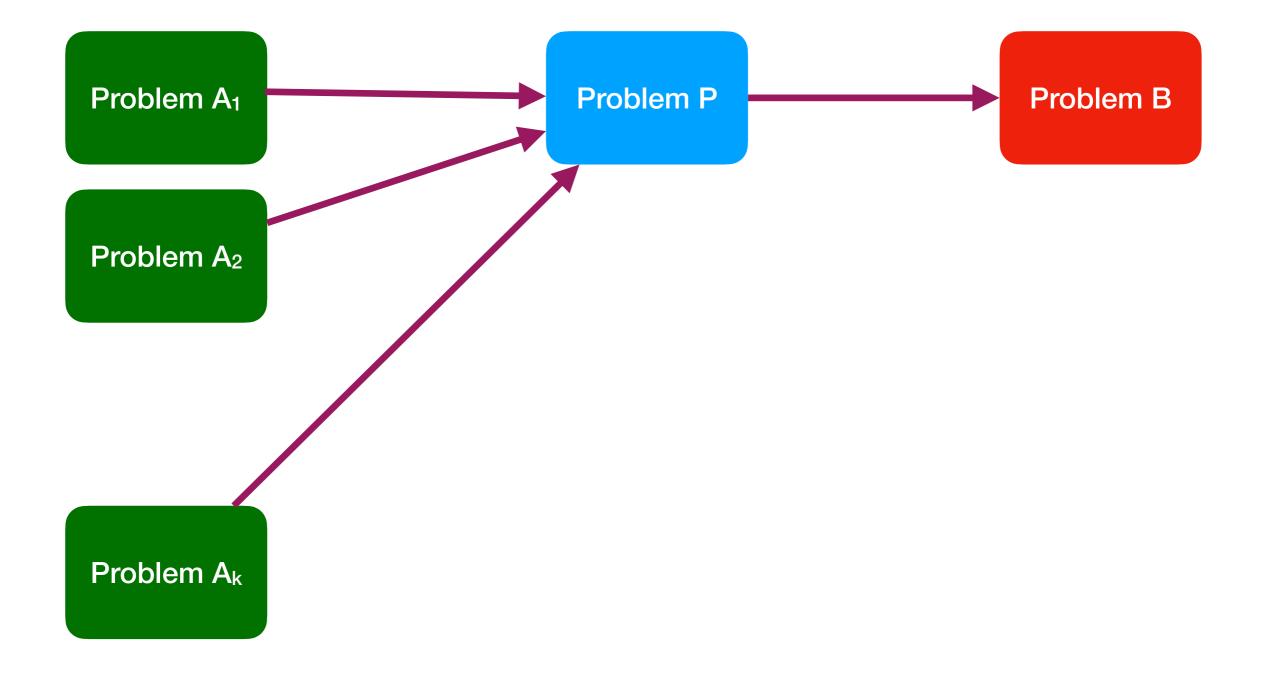
- Assume problem P is NP-complete.
 - Then every problem in NP is efficiently reducible to P. (why?)

- Assume problem P is NP-complete.
 - Then every problem in NP is efficiently reducible to P. (why?)
- To prove NP-hardness of problem B, it seems that we have to construct a reduction from every problem A in NP.

- Assume problem P is NP-complete.
 - Then every problem in NP is efficiently reducible to P. (why?)
- To prove NP-hardness of problem B, it seems that we have to construct a reduction from every problem A in NP.
 - Actually, it suffices to construct a reduction from P to B.

- Assume problem P is NP-complete.
 - Then every problem in NP is efficiently reducible to P. (why?)
- To prove NP-hardness of problem B, it seems that we have to construct a reduction from every problem A in NP.
 - Actually, it suffices to construct a reduction from P to B.
 - A reduction from any other problem A to B goes "via" P.

NP-hardness via P



• Assume problem P is NP-complete.

- Assume problem P is NP-complete.
- This all works if we have an NP-complete problem to start with.

• A CNF formula with m clauses and k literals.

 $\boldsymbol{\varphi} = (X_1 \lor X_5 \lor X_3) \land (X_2 \lor X_6 \lor \mathbf{X}_5) \land \dots \land (X_3 \lor X_8 \lor X_{12})$

- ("An AND of ORs").
- Each clause has three literals.

• A CNF formula with m clauses and k literals.

 $\boldsymbol{\varphi} = (X_1 \lor X_5 \lor X_3) \land (X_2 \lor X_6 \lor \ \ X_5) \land \dots \land (X_3 \lor X_8 \lor X_{12})$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_i .

• A CNF formula with m clauses and k literals.

 $\boldsymbol{\varphi} = (X_1 \lor X_5 \lor X_3) \land (X_2 \lor X_6 \lor \mathbf{X}_5) \land \dots \land (X_3 \lor X_8 \lor X_{12})$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in {0,1} for each variable x_i.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).

• A CNF formula with m clauses and k literals.

 $\boldsymbol{\varphi} = (X_1 \lor X_5 \lor X_3) \land (X_2 \lor X_6 \lor \mathbf{X}_5) \land \dots \land (X_3 \lor X_8 \lor X_{12})$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in {0,1} for each variable x_i.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem 3SAT : Decide if the input formula φ has a satisfying assignment.

• 3 SAT is in NP (why?)

- 3 SAT is in NP (why?)
- 3 SAT is NP-hard.

- 3 SAT is in NP (why?)
- 3 SAT is NP-hard.
- Remarks:
 - The first problem shown to be NP-complete was the SAT problem (more general than 3 SAT), and this reduces to 3SAT.
 - Several textbooks start from Circuit SAT, a version of the SAT problem defined on circuits with boolean gates AND, OR or NOT.

• Suppose that you are given a problem A and you want to prove that it is NP-complete.

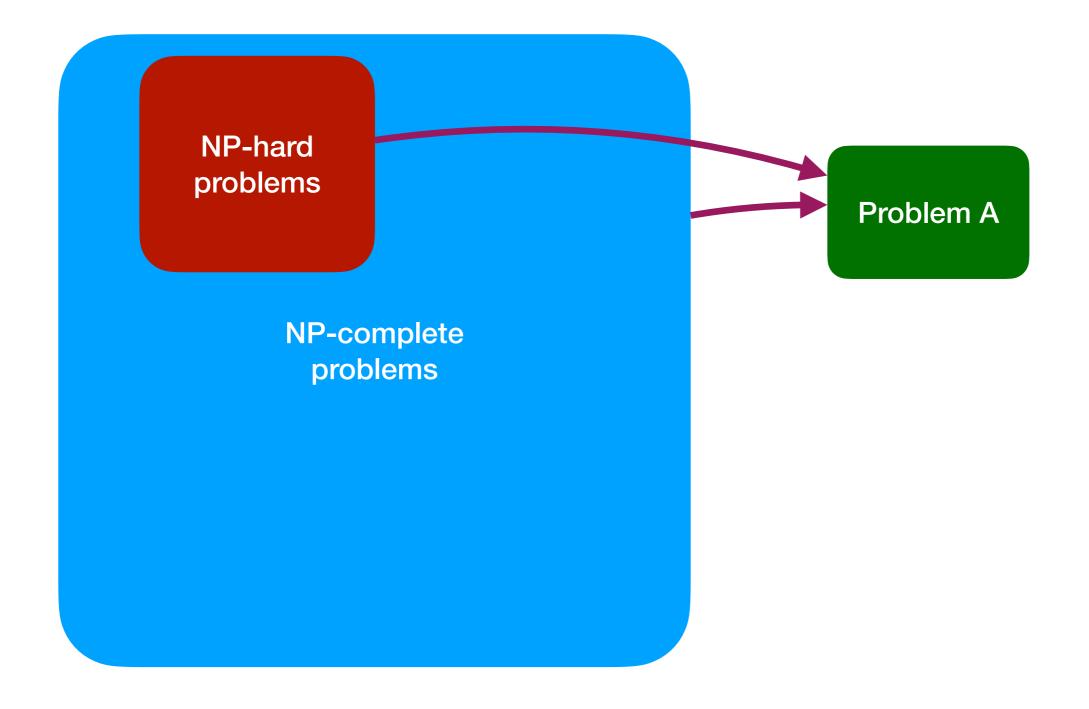
- Suppose that you are given a problem A and you want to prove that it is NP-complete.
- First, prove that A is in NP.
 - Usually by observing that a solution is efficiently checkable.

- Suppose that you are given a problem A and you want to prove that it is NP-complete.
- First, prove that A is in NP.
 - Usually by observing that a solution is efficiently checkable.
- Then prove that A is NP-hard.
 - Construct a polynomial time reduction from some NPcomplete problem P.

In fact ...

- Suppose that you are given a problem A and you want to prove that it is NP-complete.
- First, prove that A is in NP.
 - Usually by observing that a solution is efficiently checkable.
- Then prove that A is NP-hard.
 - Construct a polynomial time reduction from some NPhard problem P.

Pictorially



Enough with the definitions. Let's see how it works.

Enough with the definitions. Let's see how it works.

Next time!