
Introduction to Algorithms and
Data Structures

Introduction to NP-completeness

So far…

• We were given a problem A that we want to solve.

So far…

• We were given a problem A that we want to solve.

• We came up with an algorithm ALGA that solves it.

So far…

• We were given a problem A that we want to solve.

• We came up with an algorithm ALGA that solves it.

• We argued about the correctness of ALGA (sometimes).

So far…

• We were given a problem A that we want to solve.

• We came up with an algorithm ALGA that solves it.

• We argued about the correctness of ALGA (sometimes).

• We argued about its running time.

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Polynomial time

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵)
O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Efficient algorithms

Efficient algorithms

• An algorithm is typically called efficient if it runs in
polynomial time.

Efficient algorithms

• An algorithm is typically called efficient if it runs in
polynomial time.

• If we were not interested in efficiency, we could solve all
of these problems in exponential time using brute
force.

O(cn)

Efficient algorithms

• An algorithm is typically called efficient if it runs in
polynomial time.

• If we were not interested in efficiency, we could solve all
of these problems in exponential time using brute
force.

O(cn)

• If its possible to design an efficient algorithm for a
problem, we shouldn’t be satisfied with brute force.

Efficient algorithms

Efficient algorithms

• Is it possible to design a polynomial-time algorithm for
every problem?

Efficient algorithms

• Is it possible to design a polynomial-time algorithm for
every problem?

• Are there problems for which polynomial-time algorithms
do not exist?

Reductions

Polynomial Time Reduction

• We are given a problem A that we want to solve.

Polynomial Time Reduction

• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

Polynomial Time Reduction

• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem B.

Polynomial Time Reduction

• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem B.

• We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

Polynomial Time Reduction

• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem B.

• We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

• If ALGA is a polynomial time algorithm, then this is a
polynomial time reduction.

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

… 
 

ALGA

ALGB

ALGB

Notation

• When problem A reduces to problem B in polynomial
time, we write  
 
A ≤p B 
 
We often say “there is a polynomial time reduction from A
to B”.

How to work with reductions

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

Types of reductions

• Turing reduction:

• Notation: A ≤T B

• A reduction which solves problem A using
(polynomially) many calls to an oracle (an algorithm) for
solving problem B.

• (Also known as Cook reduction).

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

… 
 

ALGA

ALGB

ALGB

Types of reductions
• Turing reduction:

• Notation: A ≤T B

• A reduction which solves problem A using (polynomially) many calls to an
oracle (an algorithm) for solving problem B.

• (Also known as Cook reduction).

• Many-one reduction:

• Notation: A ≤m B

• A reduction which converts instances of problem A to instances of problem B.

• (Also known as Karp reduction).

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

 
 

ALGA

ALGB

instance  
transformation

Types of reductions
• Turing reduction:

• Argument: Here is an algorithm which runs in polynomial time solving problem
A, using polynomially many calls to an oracle for problem B.

• Many-one reduction:

• Argument:

• If z is a solution to instance I of problem A, then z’ is a solution of instance
f(I) to problem B.

• If z is not a solution to instance I of problem A, then z’ is not a solution of
instance f(I) to problem B.

• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a
solution to instance I of problem A.

Examples of reductions?

Deciding bipartiteness

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.

• And how did we solve that?

Deciding bipartiteness
• Given a graph G, decide if it is bipartite or not.

• How did we solve this problem?

• Given a a graph G decide if it is 2-colourable or not.

• We reduced the problem to deciding 2-colorability.

• And how did we solve that?

• We reduced it to checking whether BFS colours two
adjacent nodes with the same colour.

–Johnny Appleseed

“Type a quote here.”

Directed Acyclic Graphs
• A directed acyclic graph (DAG) G is a graph that does not

have any cycles.

1

2

0

3

4

1

2

0

3

4

not a DAG a DAG

Topological Ordering
• Given a directed graph G, a topological ordering of G is

an ordering of the nodes u1, u2, … , un, such that for every
edge e=(ui, uj), it holds that i < j.

• Intuitively, a topological ordering orders the nodes in a
way such that all edges point “forward”.

1 0 2 3 4

1

2

0

3

4

Directed Acyclic Graphs
• A directed acyclic graph (DAG) G is a graph that does not

have any cycles.

1

2

0

3

4

1

2

0

3

4

not a DAG a DAG

Deciding for DAGs

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

• Given a graph G, decide if it has a topological ordering.

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

• Given a graph G, decide if it has a topological ordering.

• We reduced the problem to deciding whether the graph has
a topological ordering.

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

• Given a graph G, decide if it has a topological ordering.

• We reduced the problem to deciding whether the graph has
a topological ordering.

• And how can we solve that?

Deciding for DAGs
• Given a graph G, decide if it is a DAG.

• How can we solve this problem?

• Given a graph G, decide if it has a topological ordering.

• We reduced the problem to deciding whether the graph has
a topological ordering.

• And how can we solve that?

• We can develop an algorithm that finds a topological
ordering, or returns that there is none.

Computational classes

Computational classes

Computational classes

• Every problem for which there is a known polynomial time
algorithm is in the computational class P.

• Searching, sorting, interval scheduling, graph traversal,
…

• The class P contains computational problems that can
be solved in polynomial time.

• We also say that they can be solved efficiently.

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

Problems not in P

• Do you remember any problems from the lectures that we
did not manage to prove that they lie in P?

• Weighted interval scheduling?

• Subset sum?

• Knapsack?

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The class NP

The class NP
• Stands for “non deterministic polynomial time”.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

• Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

• Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

• Efficiently verifiable.

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

Equivalent formulation

decision version

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Decide if there exists a subset S of the items such
that

∑
i∈S

wi = W

Subset Sum is in NP

• If we are given a candidate solution S, we can easily
check whether the following holds or not:

∑
i∈S

wi = W

Problem classification

Problem classification

• Problems in P:

• Searching, sorting, graph traversal, maximum flow,
minimum cut, Weighted Interval Scheduling, …

Problem classification

• Problems in P:

• Searching, sorting, graph traversal, maximum flow,
minimum cut, Weighted Interval Scheduling, …

• Problems in NP:

• Subset Sum, Knapsack

Problem classification

• Problems in P:

• Searching, sorting, minimum spanning tree, graph
traversal, Weighted Interval Scheduling, …

• Problems in NP:

• Subset Sum, Knapsack, Weighted Interval Scheduling,
searching, sorting, graph traversal, Weighted Interval
Scheduling, …

The landscape of complexity

P

contains all problems that 
can be solved in polynomial time.

The landscape of complexity

 NP P

contains all problems that 
can be solved in polynomial time.

contains all problems for which 
a solution can be verified in  

polynomial time.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

NP-hardness
• A problem B is NP-hard if for every problem A in NP, it holds

that A ≤p B.

• If every problem in NP is “polynomial time reducible to B”.

• This captures the fact that B is at least as hard as the
hardest problems in NP.

NP-hardness

• A problem B is NP-hard if for every problem A in NP, it
holds that A ≤p B.

• To prove NP-hardness, it seems that we have to construct
a reduction from every problem A in NP.

• This is not very useful!

NP-completeness

• A problem B is NP-complete if

NP-completeness

• A problem B is NP-complete if

• It is in NP.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

• i.e., every problem in NP can be efficiently reduced
to it.

NP-completeness

NP-completeness
• Assume problem P is NP-complete.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

• Actually, it suffices to construct a reduction from P to B.

NP-completeness
• Assume problem P is NP-complete.

• Then every problem in NP is efficiently reducible to P.
(why?)

• To prove NP-hardness of problem B, it seems that we
have to construct a reduction from every problem A in NP.

• Actually, it suffices to construct a reduction from P to B.

• A reduction from any other problem A to B goes “via” P.

NP-hardness via P
Problem A1 Problem P Problem B

Problem A2

Problem Ak

NP-completeness

NP-completeness

• Assume problem P is NP-complete.

NP-completeness

• Assume problem P is NP-complete.

• This all works if we have an NP-complete problem to start
with.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

3 SAT is NP-complete

3 SAT is NP-complete
• 3 SAT is in NP (why?)

3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

3 SAT is NP-complete
• 3 SAT is in NP (why?)

• 3 SAT is NP-hard.

• Remarks:

• The first problem shown to be NP-complete was the SAT
problem (more general than 3 SAT), and this reduces to
3SAT.

• Several textbooks start from Circuit SAT, a version of the
SAT problem defined on circuits with boolean gates AND,
OR or NOT.

Proving NP-completeness

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

• Then prove that A is NP-hard.

• Construct a polynomial time reduction from some NP-
complete problem P.

In fact …
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

• Then prove that A is NP-hard.

• Construct a polynomial time reduction from some NP-
hard problem P.

Pictorially

NP-complete 
problems

Problem A

NP-hard 
problems

Enough with the definitions.
Let’s see how it works.

Enough with the definitions.
Let’s see how it works.

Next time!

