Introduction to Algorithms and Data Structures

Vertex Cover and Other NP-complete problems
Polynomial Time Reduction

• We are given a problem \(A \) that we want to solve.

• We can reduce solving problem \(A \) to solving some other problem \(B \).

• Assume that we had an algorithm \(\text{ALG}^B \) for solving problem \(B \), which we can use at cost \(O(1) \).

• We can construct an algorithm \(\text{ALG}^A \) for solving problem \(A \), which uses calls to the algorithm \(\text{ALG}^B \) as a subroutine.

• If \(\text{ALG}^A \) is a polynomial time algorithm, then this is a polynomial time reduction.
Pictorially

Problem A

Do stuff …
Do stuff …
Do stuff …

ALG^A

instance transformation

Problem B

ALG^B
Types of reductions

• **Turing reduction:**

 • Argument: Here is an algorithm which runs in polynomial time solving problem A, using polynomially many calls to an oracle for problem B.

• **Many-one reduction:**

 • Argument:

 • If \(z \) is a solution to instance \(I \) of problem A, then \(z' \) is a solution of instance \(f(I) \) to problem B.

 • If \(z \) is not a solution to instance \(I \) of problem A, then \(z' \) is not a solution of instance \(f(I) \) to problem B.

 • Equivalently: If \(z' \) is a solution of instance \(f(I) \) to problem B, then \(z \) is a solution to instance \(I \) of problem A.
How to work with reductions

- **Positive:** Assume that I want to solve problem A and I know how to solve problem B in polynomial time.

 - I can try to come up with a polynomial time reduction $A \leq_p B$, which will give me a polynomial time algorithm for solving A.

- **Contrapositive:** Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.

 - If I come up with a polynomial time reduction $A \leq_p B$, it is also unlikely that there is a polynomial time algorithm that solves B.

 - B is “at least as hard to solve as” A, because if I could solve B, I could also solve A.
How to work with reductions

- **Positive:** Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
 - I can try to come up with a polynomial time reduction $A \leq_p B$, which will give me a polynomial time algorithm for solving A.

- **Contrapositive:** Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
 - If I come up with a polynomial time reduction $A \leq_p B$, it is also unlikely that there is a polynomial time algorithm that solves B.
 - B is “at least as hard to solve as” A, because if I could solve B, I could also solve A.
3 SAT

• A CNF formula with m clauses and k literals.

$$\phi = (x_1 \lor x_5 \lor x_3) \land (x_2 \lor x_6 \lor \neg x_5) \land \ldots \land (x_3 \lor x_8 \lor x_12)$$

• (“An AND of ORs”).

• Each clause has three literals.
3 SAT

- A CNF formula with m clauses and k literals.

\[\phi = (x_1 \lor x_5 \lor x_3) \land (x_2 \lor x_6 \lor \overline{x_5}) \land ... \land (x_3 \lor x_8 \lor x_{12}) \]

- (“An AND of ORs”).

- Each clause has three literals.

- Truth assignment: A value in \{0,1\} for each variable x_i.
3 SAT

• A CNF formula with m clauses and k literals.

$$\phi = (x_1 \lor x_5 \lor x_3) \land (x_2 \lor x_6 \lor \neg x_5) \land \ldots \land (x_3 \lor x_8 \lor x_{12})$$

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in \{0,1\} for each variable x_i.

• Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
3 SAT

- A CNF formula with \(m \) clauses and \(k \) literals.

\[
\phi = (x_1 \lor x_5 \lor x_3) \land (x_2 \lor x_6 \lor \neg x_5) \land \ldots \land (x_3 \lor x_8 \lor x_{12})
\]

- (“An AND of ORs”).

- Each clause has three literals.

- Truth assignment: A value in \{0,1\} for each variable \(x_i \).

- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).

- Computational problem 3SAT: Decide if the input formula \(\phi \) has a satisfying assignment.
3 SAT is NP-complete
3 SAT is NP-complete

- 3 SAT is in NP
3 SAT is NP-complete

- 3 SAT is in NP
- 3 SAT is NP-hard.
3 SAT is NP-complete

- 3 SAT is in NP
- 3 SAT is NP-hard.

Remarks:

- The first problem shown to be NP-complete was the SAT problem (more general than 3 SAT), and this reduces to 3SAT.
- Several textbooks start from Circuit SAT, a version of the SAT problem defined on circuits with boolean gates AND, OR or NOT.
Proving NP-completeness
Proving NP-completeness

• Suppose that you are given a problem A and you want to prove that it is NP-complete.
Proving NP-completeness

• Suppose that you are given a problem A and you want to prove that it is NP-complete.

• First, prove that A is in NP.
 • Usually by observing that a solution is efficiently checkable.
Proving NP-completeness

- Suppose that you are given a problem A and you want to prove that it is NP-complete.

- First, prove that A is in NP.
 - Usually by observing that a solution is efficiently checkable.

- Then prove that A is NP-hard.
 - Construct a polynomial time reduction from some NP-complete (or just NP-hard) problem P.
Enough with the definitions. Let’s see how it works.

• We will prove that a well-known problem on graphs, called **Vertex Cover** is **NP-complete**.
Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.

Definition: A minimum vertex cover is a vertex cover of the smallest possible size.

Vertex Cover
Input: A graph $G=(V, E)$
Output: A minimum vertex cover.
Example
Example
Example
Example

A vertex cover
Example
Example
Example
Example

A minimum vertex cover
Vertex Cover

- **Definition:** A vertex cover \(C \) of a graph \(G=(V, E) \) is a subset of the nodes such that every edge \(e \) in the graph has at least one endpoint in \(C \).

- **Definition:** A minimum vertex cover is a vertex cover of the smallest possible size.

- **Vertex Cover**
 - **Input:** A graph \(G=(V, E) \)
 - **Output:** A minimum vertex cover.
Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.

Definition: A minimum vertex cover is a vertex cover of the smallest possible size.

Vertex Cover
Input: A graph $G=(V, E)$ and a number k
Output: Is there a vertex cover of size $\leq k$?.
Vertex cover
Vertex cover

- Vertex Cover is in \textit{NP}.
Vertex cover

- Vertex Cover is in NP.

- Assume that we are given a vertex cover.

 - We can check that is has size k and that it is a vertex cover in polynomial time.
Vertex cover

- Vertex Cover is in NP-hard.
Vertex cover

- Vertex Cover is in **NP-hard**.

- We will construct a polynomial time reduction from 3SAT.
 - i.e., we will prove that $3SAT \leq^p \text{Vertex Cover.}$
The reduction

- Let ϕ be a 3-CNF formula with m clauses and d variables.

- We construct, in polynomial time, an instance $<G, k>$ of Vertex Cover such that

 - If ϕ is satisfiable \Rightarrow G has a vertex cover of size at most k.

 - If ϕ is not satisfiable \Rightarrow G does not have any vertex cover of size at most k.
The reduction

- For every variable x in ϕ, we create two nodes x and $\neg x$ in G and we connect them with an edge $e = (x, \neg x)$.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

• For every variable x in ϕ, we create two nodes x and \overline{x} in G and we connect them with an edge $e = (x, \overline{x})$.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_2)$
The reduction

For every clause \(l = (l_1, l_2, l_3) \) in \(\phi \), we create three nodes \(l_1, l_2, l_3 \) in \(G \) and we connect them all with each other.

Running example: \(\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2) \)
The reduction

• We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

• We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \lor (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

• We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\lnot x_1 \lor \lnot x_2 \lor \lnot x_2) \land (\lnot x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: \(\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2) \)
The reduction

- Let ϕ be a 3-CNF formula with m clauses and d variables.
- We construct, in polynomial time, an instance $<G, k>$ of Vertex Cover, with $k = d + 2m$ such that
 - If ϕ is satisfiable \implies G has a vertex cover of size at most k.
 - If ϕ is not satisfiable \implies G does not have any vertex cover of size at most $k.$
One direction
One direction

- If ϕ is satisfiable \Rightarrow G has a vertex cover of size at most k.
One direction

• If ϕ is satisfiable \Rightarrow G has a vertex cover of size at most k.

• Let (y_1, y_2, \ldots, y_k) in $\{0,1\}^n$ be a satisfying assignment for ϕ.
One direction

- If ϕ is satisfiable \Rightarrow G has a vertex cover of size at most k.

- Let (y_1, y_2, \ldots, y_k) in $\{0,1\}^n$ be a satisfying assignment for ϕ.

- For the nodes on the top: If $y_i = 1$, include node x_i in the vertex cover C, otherwise, include node $\neg x_i$.
One direction

• If ϕ is satisfiable \Rightarrow G has a vertex cover of size at most k.

• Let (y_1, y_2, \ldots, y_k) in $\{0, 1\}^n$ be a satisfying assignment for ϕ.

• For the nodes on the top: If $y_i = 1$, include node x_i in the vertex cover C, otherwise, include node $\neg x_i$.

• For the nodes on the bottom: In each triangle, choose a node x_i that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.
Example

- For the nodes on the top: If $y_i = 1$, include node x_i in the vertex cover C, otherwise, include node $\neg x_i$.

- Assume $y_1 = 0$, $y_2 = 1$.

Running example: $\phi = (x_1 \lor \neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Example

- For the nodes on the top: If \(y_i = 1 \), include node \(x_i \) in the vertex cover \(C \), otherwise, include node \(\overline{x_i} \).

- Assume \(y_1 = 0 \), \(y_2 = 1 \).

Running example: \(\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_2) \)
Example

- For the nodes on the bottom: In each triangle, choose a note x_i that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.

- Assume $y_1 = 0$, $y_2 = 1$.

Running example: $\phi = (x_1 \lor \neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Example

• For the nodes on the bottom: In each triangle, choose a note x_i that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume $y_1 = 0$, $y_2 = 1$.

Running example: $\phi = (x_1 \vee \neg x_1 \vee x_2) \land (\neg x_1 \vee \neg x_2 \vee \neg x_2) \land (\neg x_1 \vee x_2 \vee x_2)$
One direction

• **Claim:** The set of nodes we have chosen is a vertex cover.

• Every edge on the top is incident to either node x_i or node \overline{x}_i.

• Every edge on the bottom is incident to some node in the set, since we select two out of three nodes.

• Every edge between the top and to bottom is incident to some node.
Example

• For the nodes on the bottom: In each triangle, choose a note x_i that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume $y_1 = 0$, $y_2 = 1$.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
One direction

• **Claim:** The vertex cover has size $k = d + 2m$

 • Each variable is selected at the top (either as x_i or as $\neg x_i$).

 • For each clause, we select two nodes at the bottom.
Other direction

• If \(\phi \) is not satisfiable \(\Rightarrow \) \(G \) does not have any vertex cover of size at most \(k \).
Other direction

- If ϕ is not satisfiable \Rightarrow G does not have any vertex cover of size at most k.

- G has a vertex cover of size at most k. \Rightarrow ϕ is satisfiable.
Other direction

- G has a vertex cover of size at most k. $\implies \phi$ is satisfiable.
Other direction

• G has a vertex cover of size at most k. $\Rightarrow \phi$ is satisfiable.

• Let C be a vertex cover of size $k = d + 2m$ in G.
Other direction

• G has a vertex cover of size at most k. $\Rightarrow \phi$ is satisfiable.

• Let C be a vertex cover of size $k = d + 2m$ in G.

• Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.
Example

- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Example

- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Running example: \(\phi = (x_1 \lor x_1 \lor x_2) \land (\lnot x_1 \lor \lnot x_2 \lor \lnot x_2) \land (\lnot x_1 \lor x_2 \lor x_2) \)
Other direction

- G has a vertex cover of size at most k. \(\Rightarrow\) \(\phi\) is satisfiable.

- Let \(C\) be a vertex cover of size \(k = d + 2m\) in \(G\).

- Since it is a vertex cover, it must include at least two out of three nodes in each “clause gadget” at the bottom.
Other direction

- G has a vertex cover of size at most k. $\Rightarrow \phi$ is satisfiable.

- Let C be a vertex cover of size $k = d + 2m$ in G.

- Since it is a vertex cover, it must include at least two out of three nodes in each “clause gadget” at the bottom.

- This means that at least $2m$ nodes of C are at the bottom.
Other direction

• G has a vertex cover of size at most k. $\Rightarrow \phi$ is satisfiable.

• Let C be a vertex cover of size $k = d + 2m$ in G.

• Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

• This means that at least $2m$ nodes of C are at the bottom.

• This means that at most d nodes of C are at the top.
Other direction

- This means that at most \(d \) nodes of \(C \) are at the top.

- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in \(C \).
Example

- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in C.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Example

- To satisfy the edges at the top, in each “variable gadget”, at least one node must be included in C.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the bottom, in each “variable gadget”, at least one node must be included in C.
Other direction

- This means that at most d nodes of C are at the top.

- To satisfy the edges between the top and the bottom, in each “variable gadget”, at least one node must be included in C.

- From the two statements above, in each “variable gadget”, exactly one node must be included in C.
Satisfying the formula
Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

- Note that we either choose x_i or $\overline{x_i}$ to be 1, but not both.
Satisfying the formula

• Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

• Note that we either choose x_i or $\overline{x_i}$ to be 1, but not both.

 • From the statement “in each “variable gadget”, exactly one node must be included in C”.

Satisfying the formula

• Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

• Note that we either choose x_i or \overline{x}_i to be 1, but not both.

 • From the statement “in each “variable gadget”, exactly one node must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on the top (in the “variable gadget”) that is in C.
Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

- Note that we either choose x_i or \overline{x}_i to be 1, but not both.
 - From the statement “in each “variable gadget”, exactly one node must be included in C”.

- Since all “cross” edges are covered, there must be one endpoint on the top (in the “variable gadget”) that is in C.
 - This means that there is one variable of the clause that is set to 1.
Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

- Note that we either choose x_i or $\overline{x_i}$ to be 1, but not both.
 - From the statement “in each “variable gadget”, exactly one node must be included in C”.

- Since all “cross” edges are covered, there must be one endpoint on the top (in the “variable gadget”) that is in C.
 - This means that there is one variable of the clause that is set to 1.
 - Thus the clause is satisfied.
Example

- To satisfy the edges at the top, in each “variable gadget”, at least one node must be included in C.

Running example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$
Vertex Cover

• **Definition:** A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.

• **Definition:** A minimum vertex cover is a vertex cover of the smallest possible size.

• **Vertex Cover**

 Input: A graph $G=(V, E)$

 Output: A minimum vertex cover.
Vertex Cover
decision version

• **Definition:** A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.

• **Definition:** A minimum vertex cover is a vertex cover of the smallest possible size.

• **Vertex Cover**
 Input: A graph $G=(V, E)$ and a number k
 Output: Is there a vertex cover of size $\leq k$?
From optimisation to decision

• We are given an optimisation problem P (assume minimisation).

 • E.g., find the minimum vertex cover.

• We introduce a threshold k.

• The decision version P_d becomes: Given an instance of P and the threshold k as input, is there a solution to P of value at most k?

 • E.g., is there a vertex cover of size at most k?
Optimisation vs decision
Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_d in polynomial time. (why?)
Optimisation vs decision

• If we can solve P in polynomial time, we can solve P_d in polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is the optimisation version.
• If we can solve P in polynomial time, we can solve P_d in polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is the optimisation version.

• Note: It is generally not correct to say that an optimisation problem is NP-complete!
Optimisation vs decision

• If we can solve P in polynomial time, we can solve P_d in polynomial time. \(\text{why?}\)

• This implies that if the decision version is \text{NP-hard}, so is the optimisation version.

• Note: It is generally not correct to say that an optimisation problem is \text{NP-complete}!

• Often the opposite is also true.
Optimisation vs decision

• If we can solve P in polynomial time, we can solve P_d in polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is the optimisation version.

• Note: It is generally not correct to say that an optimisation problem is NP-complete!

• Often the opposite is also true.

• If we can solve P_d in polynomial time, we can solve P in polynomial time.
Optimisation vs decision

- **Vertex Cover (Optimisation)**
 - **Input:** A graph $G=(V, E)$
 - **Output:** A minimum vertex cover.

- **Vertex Cover (Decision)**
 - **Input:** A graph $G=(V, E)$ and a number k
 - **Output:** Is there a vertex cover of size $\leq k$?
Optimisation vs decision

- **Vertex Cover Size (Optimisation)**

 Input: A graph $G = (V, E)$

 Output: The size of a minimum vertex cover.

- **Vertex Cover (Decision)**

 Input: A graph $G = (V, E)$ and a number k

 Output: Is there a vertex cover of size $\leq k$?
Vertex Cover Size

VC (decision)
Vertex Cover Size

$k = 1$?

VC (decision)
Vertex Cover Size

$k = 1$?

no

VC (decision)
Vertex Cover Size

$k = 1$?

no

$k = 2$?

VC (decision)
Vertex Cover Size

k = 1 ?
no

k = 2 ?
no

VC (decision)
Vertex Cover Size

- $k = 1$?
 - no
 - $k = 2$?
 - no
 - ...

VC (decision)
Vertex Cover Size

$k = 1$?

no

$k = 2$?

no

...

$k = n$?

VC (decision)
Vertex Cover Size

\[k = 1 ? \]
\[\text{no} \]
\[k = 2 ? \]
\[\text{no} \]
\[\ldots \]
\[k = n ? \]
\[\text{yes} \]
Vertex Cover Size

\[k = 1 \text{ ?} \rightarrow \text{no} \]
\[k = 2 \text{ ?} \rightarrow \text{no} \]
\[\ldots \]
\[k = n \text{ ?} \rightarrow \text{yes} \]

VC (decision)
Vertex Cover Size

k = 1 ?
no

k = 2 ?
no

k = l-1 ?
no

k = l ?
yes

k = n ?
yes

VC (decision)
Vertex Cover Size

VC (decision)
Vertex Cover Size

$k = 1$?
Vertex Cover Size

k = 1 ?

no

VC (decision)
Vertex Cover Size

k = 1 ?
no

k = n ?

VC (decision)
Vertex Cover Size

$k = 1$?

- no

$k = n$?

- yes

VC (decision)
Vertex Cover Size

- k = 1?
 - no

- k = n/2?

- k = n?
 - yes
Vertex Cover Size

\[k = 1 ? \]
\[\text{no} \]

\[k = n/2 ? \]
\[\text{no} \]

\[k = n ? \]
\[\text{yes} \]
Vertex Cover Size

- $k = 1$?
 - no

- $k = n/2$?
 - no

- $k = n$?
 - yes
Optimisation vs decision

• **Vertex Cover Size (Optimisation)**
 - **Input:** A graph $G=(V, E)$
 - **Output:** The size of a minimum vertex cover.

• **Vertex Cover (Decision)**
 - **Input:** A graph $G=(V, E)$ and a number k
 - **Output:** Is there a vertex cover of size $\leq k$?
Optimisation vs decision

- **Vertex Cover (Optimisation)**

 Input: A graph $G=(V, E)$

 Output: A minimum vertex cover.

- **Vertex Cover (Decision)**

 Input: A graph $G=(V, E)$ and a number k

 Output: Is there a vertex cover of size $\leq k$?
Vertex Cover
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

• Pick a vertex v in the graph.
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

• Pick a vertex v in the graph.

 • Remove it (and the incident edges) to get graph $G - \{v\}$.
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

• Pick a vertex v in the graph.

 • Remove it (and the incident edges) to get graph $G - \{v\}$.

 • Property: If v was in any minimum vertex cover, $G - \{v\}$ has a minimum vertex cover of size k^*-1.
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

• Pick a vertex v in the graph.

 • Remove it (and the incident edges) to get graph $G - \{v\}$.

 • Property: If v was in any minimum vertex cover, $G - \{v\}$ has a minimum vertex cover of size k^*-1.

 • Check if the graph $G - \{v\}$ has a vertex cover of size at most k^*-1.
Vertex Cover

• First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

• Pick a vertex v in the graph.

 • Remove it (and the incident edges) to get graph $G - \{v\}$.

 • **Property:** If v was in any minimum vertex cover, $G - \{v\}$ has a minimum vertex cover of size $k^* - 1$.

 • Check if the graph $G - \{v\}$ has a vertex cover of size at most $k^* - 1$.

 • **Yes:** Include v in the vertex cover.
Vertex Cover

- First, find the value k^* of the minimum vertex cover using the algorithm for VC_d.

- Pick a vertex v in the graph.
 - Remove it (and the incident edges) to get graph $G - \{v\}$.
 - **Property:** If v was in any minimum vertex cover, $G - \{v\}$ has a minimum vertex cover of size k^*-1.
 - Check if the graph $G - \{v\}$ has a vertex cover of size at most k^*-1.
 - **Yes:** Include v in the vertex cover.
 - **No:** Do not include v in the vertex cover.
Vertex Cover

• First, find the value \(k^* \) of the minimum vertex cover using the algorithm for \(VC_d \).

• Pick a vertex \(v \) in the graph.

 • Remove it (and the incident edges) to get graph \(G - \{v\} \).

 • Property: If \(v \) was in any minimum vertex cover, \(G - \{v\} \) has a minimum vertex cover of size \(k^*-1 \).

 • Check if the graph \(G - \{v\} \) has a vertex cover of size at most \(k^*-1 \).

 • Yes: Include \(v \) in the vertex cover.

 • No: Do not include \(v \) in the vertex cover.

 • Then move to the next vertex.
The subset sum problem

- We are given a set of \(n \) items \(\{1, 2, \ldots, n\} \).
- Each item \(i \) has a non-negative integer weight \(w_i \).
- We are given an integer bound \(W \).
- Goal: Select a subset \(S \) of the items such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} w_i \) is maximised.
Equivalent formulation
decision version

• We are given a set \(T \) of \(n \) items \(\{1, 2, \ldots, n\} \).

• Each item \(i \) has a non-negative integer weight \(w_i \).

• We are given an integer bound \(W \).

• Goal: Decide if there exists a subset \(S \) of the items such that

\[
\sum_{i \in S} w_i = W
\]
Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_d in polynomial time. (why?)
 - This implies that if the decision version is NP-hard, so is the optimisation version.
- Often the opposite is also true.
 - If we can solve P_d in polynomial time, we can solve P in polynomial time.
Optimisation vs decision

• If we can solve P in polynomial time, we can solve P_d in polynomial time. (*why?*)

 • This implies that if the decision version is NP-hard, so is the optimisation version.

• Often the opposite is also true.

 • If we can solve P_d in polynomial time, we can solve P in polynomial time.

We did this for VC. Can we also do it for SS?