
Introduction to Algorithms and
Data Structures

Vertex Cover and Other NP-complete problems

Polynomial Time Reduction
• We are given a problem A that we want to solve.

• We can reduce solving problem A to solving some other
problem B.

• Assume that we had an algorithm ALGB for solving problem
B, which we can use at cost O(1).

• We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

• If ALGA is a polynomial time algorithm, then this is a
polynomial time reduction.

Pictorially
Problem A Problem B

ALGB

Do stuff …

Do stuff …

Do stuff…

Do stuff …

ALGA

ALGB

instance  
transformation

Types of reductions
• Turing reduction:

• Argument: Here is an algorithm which runs in polynomial time solving problem
A, using polynomially many calls to an oracle for problem B.

• Many-one reduction:

• Argument:

• If z is a solution to instance I of problem A, then z’ is a solution of instance
f(I) to problem B.

• If z is not a solution to instance I of problem A, then z’ is not a solution of
instance f(I) to problem B.

• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a
solution to instance I of problem A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

How to work with reductions

• Positive: Assume that I want to solve problem A and I know how
to solve problem B in polynomial time.

• I can try to come up with a polynomial time reduction A ≤p B,
which will give me a polynomial time algorithm for solving A.

• Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

• If I come up with a polynomial time reduction A ≤p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

• B is “at least as hard to solve as” A, because if I could solve B,
I could also solve A.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

3 SAT is NP-complete

3 SAT is NP-complete
• 3 SAT is in NP

3 SAT is NP-complete
• 3 SAT is in NP

• 3 SAT is NP-hard.

3 SAT is NP-complete
• 3 SAT is in NP

• 3 SAT is NP-hard.

• Remarks:

• The first problem shown to be NP-complete was the SAT
problem (more general than 3 SAT), and this reduces to
3SAT.

• Several textbooks start from Circuit SAT, a version of the
SAT problem defined on circuits with boolean gates AND,
OR or NOT.

Proving NP-completeness

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

Proving NP-completeness
• Suppose that you are given a problem A and you want to

prove that it is NP-complete.

• First, prove that A is in NP.

• Usually by observing that a solution is efficiently
checkable.

• Then prove that A is NP-hard.

• Construct a polynomial time reduction from some NP-
complete (or just NP-hard) problem P.

Enough with the definitions.
Let’s see how it works.

• We will prove that a well-known problem on graphs,
called Vertex Cover is NP-complete.

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Example

Example

Example

Example

Example

A vertex cover

Example

Example

Example

Example

A minimum vertex cover

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Vertex Cover
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex cover

Vertex cover

• Vertex Cover is in NP.

Vertex cover

• Vertex Cover is in NP.

• Assume that we are given a vertex cover.

• We can check that is has size k and that it is a vertex
cover in polynomial time.

Vertex cover

Vertex cover

• Vertex Cover is in NP-hard.

Vertex cover

• Vertex Cover is in NP-hard.

• We will construct a polynomial time reduction from 3SAT.

• i.e., we will prove that 3SAT ≤p Vertex Cover.

The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.

• We construct, in polynomial time, an instance <G, k> of
Vertex Cover such that

• If φ is satisfiable => G has a vertex cover of size at
most k.

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

The reduction
• For every variable x in φ, we create two nodes x and ⌝x in

G and we connect them with an edge e = (x , ⌝x).

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• For every variable x in φ, we create two nodes x and ⌝x in

G and we connect them with an edge e = (x , ⌝x).

x1 ⌝x1 x2 ⌝x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• For every clause l = (l 1, l2 , l3) in φ, we create three nodes

l 1, l2 , l3 in G and we connect them all with each other.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction
• We add an edge between all nodes with the same label

on the top and on the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.

• We construct, in polynomial time, an instance <G, k> of
Vertex Cover, with k = d + 2m such that

• If φ is satisfiable => G has a vertex cover of size at
most k.

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

One direction

One direction

• If φ is satisfiable => G has a vertex cover of size at most k.

One direction

• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

One direction

• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the
vertex cover C, otherwise, include node ⌝xi.

One direction

• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the
vertex cover C, otherwise, include node ⌝xi.

• For the nodes on the bottom: In each triangle, choose a
note xi that has been picked on the top and do not include
it in the vertex cover. Include the other two nodes.

Example
• For the nodes on the top: If yi = 1, include node xi in the vertex cover

C, otherwise, include node ⌝xi.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

Example
• For the nodes on the top: If yi = 1, include node xi in the vertex cover

C, otherwise, include node ⌝xi.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

One direction

• Claim: The set of nodes we have chosen is a vertex cover.

• Every edge on the top is incident to either node xi or
node ⌝xi.

• Every edge on the bottom is incident to some node in
the set, since we select two out of three nodes.

• Every edge between the top and to bottom is incident
to some node.

Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked

on the top and do not include it in the vertex cover. Include the other two nodes.

• Assume y1 = 0, y2 = 1.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

One direction
• Claim: The vertex cover has size k = d + 2m

• Each variable is selected at the top (either as xi or as ⌝xi).

• For each clause, we select two nodes at the bottom.

Other direction

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

Other direction

• If φ is not satisfiable => G does not have any vertex
cover of size at most k.

• G has a vertex cover of size at most k. => φ is
satisfiable.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

Other direction

• G has a vertex cover of size at most k. => φ is
satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two
out of three nodes in each “clause gadget” at the
bottom.

Example
• Since it is a vertex cover, it must include at least two out of

three nodes in each “clause gadget” at the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

Example
• Since it is a vertex cover, it must include at least two out of

three nodes in each “clause gadget” at the bottom.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the
bottom.

Other direction
• G has a vertex cover of size at most k. => φ is

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the
bottom.

• This means that at most d nodes of C are at the top.

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges at the top, in each “variable
gadget”, at least one node must be included in C.

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

variable gadget

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.

Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.

• From the two statements above, in each “variable
gadget”, exactly one node must be included in C.

Satisfying the formula

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

• Thus the clause is satisfied.

Example
• To satisfy the edges at the top, in each “variable gadget”, at

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

Running example: φ = (x1 ⌵ x1 ⌵ x2) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2) ⌃ (⌝x1 ⌵ x2 ⌵ x2)

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

clause gadget

variable gadget

Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

Vertex Cover
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

From optimisation to
decision

• We are given an optimisation problem P (assume
minimisation).

• E.g., find the minimum vertex cover.

• We introduce a threshold k.

• The decision version Pd becomes: Given an instance of P
and the threshold k as input, is there a solution to P of
value at most k?

• E.g., is there a vertex cover of size at most k?

Optimisation vs decision

Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in

polynomial time. (why?)

Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in

polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is
the optimisation version.

Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in

polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is
the optimisation version.

• Note: It is generally not correct to say that an optimisation
problem is NP-complete!

Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in

polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is
the optimisation version.

• Note: It is generally not correct to say that an optimisation
problem is NP-complete!

• Often the opposite is also true.

Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in

polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is
the optimisation version.

• Note: It is generally not correct to say that an optimisation
problem is NP-complete!

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in
polynomial time.

Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex Cover Size

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

…

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = 2 ?

no
…

k = n ?

yes

…

k = l ?
yes

k = l-1 ?
no

Vertex Cover Size

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

Vertex Cover Size
k = 1 ?

VC (decision)

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

no

Vertex Cover Size
k = 1 ?

VC (decision)

no

k = n ?

yes

k = n/2 ?

no

Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.

• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

Vertex Cover

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

• No: Do not include v in the vertex cover.

Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

• No: Do not include v in the vertex cover.

• Then move to the next vertex.

The subset sum problem

• We are given a set of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Select a subset S of the items such that  
 
and is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi

Equivalent formulation
decision version

• We are given a set T of n items {1, 2, … , n}.

• Each item i has a non-negative integer weight wi.

• We are given an integer bound W.

• Goal: Decide if there exists a subset S of the items such
that

∑
i∈S

wi = W

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so
is the optimisation version.

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in
polynomial time.

Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in
polynomial time. (why?)

• This implies that if the decision version is NP-hard, so
is the optimisation version.

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in
polynomial time.

We did this for VC. Can we also do it for SS?

