Introduction to Algorithms and
Data Structures

Vertex Cover and Other NP-complete problems



Polynomial Time Reduction

 We are given a problem A that we want to solve.

 We can reduce solving problem A to solving some other
problem B.

 Assume that we had an algorithm ALGB for solving problem
B, which we can use at cost O(7).

* \We can construct an algorithm ALGA for solving problem A,
which uses calls to the algorithm ALGB as a subroutine.

e If ALGAIs a polynomial time algorithm, then this is a
polynomial time reduction.



Pictorially

Problem A Problem B

Do stuff ...

Do stuff ...

Instance
transformation

Do stuff...

Do stuff ...

ALGE




Types of reductions

e Turing reduction:

* Argument: Here is an algorithm which runs in polynomial time solving problem
A, using polynomially many calls to an oracle for problem B.

e Many-one reduction:
* Argument:

* If zis a solution to instance | of problem A, then z’ is a solution of instance
f(l) to problem B.

* If z is not a solution to instance | of problem A, then z’ is not a solution of
instance f(l) to problem B.

* Equivalently: If Z’ is a solution of instance f(l) to problem B, then z is a
solution to instance | of problem A.



How to work with reductions

e Positive: Assume that | want to solve problem A and | know how
to solve problem B in polynomial time.

e | can try to come up with a polynomial time reduction A <p B,
which will give me a polynomial time algorithm for solving A.

 Contrapositive: Assume that there is a problem A for which it is
unlikely that there is a polynomial time algorithm that solves it.

e |f | come up with a polynomial time reduction A <p B, it is also
unlikely that there is a polynomial time algorithm that solves B.

e B is “at least as hard to solve as” A, because if | could solve B,
| could also solve A.
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3 SAT

A CNF formula with m clauses and k literals.

O =X1vX5vX3)~(XavXev X5) ~ ..~ (X3 v X8 X12)
(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

Computational problem 3SAT : Decide if the input formula ¢ has a
satisfying assignment.
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3 SAT is NP-complete

e 3SATIsin NP
e 3 SAT is NP-hard.

e Remarks:

* The first problem shown to be NP-complete was the SAT

problem (more general than 3 SAT), and this reduces to
3SAL.

e Several textbooks start from Circuit SAT, a version of the

SAT problem defined on circuits with boolean gates AND,
OR or NOT.
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Proving NP-completeness

e Suppose that you are given a problem A and you want to
prove that it is NP-complete.

* First, prove that A is in NP.

e Usually by observing that a solution is efficiently
checkable.

* Then prove that A is NP-hard.

 Construct a polynomial time reduction from some NP-
complete (or just NP-hard) problem P.



Enough with the definitions.
Let’s see how It works.

 We will prove that a well-known problem on graphs,
called Vertex Cover is NP-complete.



Vertex Cover

e Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
Input: A graph G=(V, E)
Output: A minimum vertex cover.
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A minimum vertex cover
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e Definition: A vertex cover C of a graph G=(V, E) is a subset
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least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
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Vertex Cover
decision version

e Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.
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Vertex cover

e \ertex Cover is in NP.
* Assume that we are given a vertex cover.

e \We can check that is has size k and that it is a vertex
cover in polynomial time.



Vertex cover
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e Vertex Cover is in NP-hard.



Vertex cover

e Vertex Cover is in NP-hard.
 We will construct a polynomial time reduction from 3SAT.

e |.e., we will prove that 3SAT <r Vertex Cover.



The reduction

e Let ¢ be a 3-CNF formula with m clauses and d variables.

 We construct, in polynomial time, an instance <G, k> of
Vertex Cover such that

e If ¢ is satisfiable => G has a vertex cover of size at
most k.

e |If ¢ is not satisfiable => G does not have any vertex
cover of size at most k.



The reduction

e For every variable x in ¢, we create two nodes x and 'x In
G and we connect them with an edge e = (x, "X).
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The reduction

e Forevery clause /= (¢, ¢.¢) in ®, we create three nodes
¢, ¢, ¢ in G and we connect them all with each other.

Running example: ¢ = (X1 X1vX2) ~("X1+v X2+ '™X2) ~ ("X1+v X2+ X2)
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Running example: ¢ = (X1 X1vX2) ~("X1+v X2+ '™X2) ~ ("X1+v X2+ X2)



The reduction

* We add an edge between all nodes with the same label
on the top and on the bottom.
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Running example: ¢ = (X1 X1vX2) ~("X1+v X2+ '™X2) ~ ("X1+v X2+ X2)



The reduction

* We add an edge between all nodes with the same label
on the top and on the bottom.

X1 X1 X2 TXo
X‘ ) “ (
X2 1 X2
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The reduction

* We add an edge between all nodes with the same label
on the top and on the bottom.

i 1
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* We add an edge between all nodes with the same label
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The reduction

* We add an edge between all nodes with the same label
on the top and on the bottom.

i 1
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The reduction

e Let ¢ be a 3-CNF formula with m clauses and d variables.

 We construct, in polynomial time, an instance <G, k> of
Vertex Cover, with k = d + 2m such that

e If ¢ is satisfiable => G has a vertex cover of size at
most k.

e |If ¢ is not satisfiable => G does not have any vertex
cover of size at most k.
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e Let(y1, V2, ..., Yk in {0,7}n be a satisfying assignment for ¢.

 For the nodes on the top: If yi = 1, include node xi in the
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One direction

If ¢ is satisfiable => G has a vertex cover of size at most k.
Let (y1, y2, ..., yk) in {0,7} be a satisfying assignment for ¢.

For the nodes on the top: If yi = 1, include node x; in the
vertex cover C, otherwise, include node x.

For the nodes on the bottom: In each triangle, choose a
note x; that has been picked on the top and do not include
it in the vertex cover. Include the other two nodes.



Example

For the nodes on the top: If yi = 1, include node x; in the vertex cover
C, otherwise, include node ™x.

e Assumeyi =0, y2=1.
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For the nodes on the top: If yi = 1, include node x; in the vertex cover
C, otherwise, include node ™x.
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Example

* For the nodes on the bottom: In each triangle, choose a note x; that has been picked
on the top and do not include it in the vertex cover. Include the other two nodes.

e Assumeyi =0, y2=1.
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Example

* For the nodes on the bottom: In each triangle, choose a note x; that has been picked
on the top and do not include it in the vertex cover. Include the other two nodes.

e Assumeys =0, y>=1.
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Running example: ¢ = (X1 X1vX2) ~("X1+v X2+ '™X2) ~ ("X1+v X2+ X2)



One direction

e (Claim: The set of nodes we have chosen is a vertex cover.

 Every edge on the top is incident to either node Xx; or
node 'Xi.

 Every edge on the bottom is incident to some node In
the set, since we select two out of three nodes.

 Every edge between the top and to bottom is incident
to some node.



Example

* For the nodes on the bottom: In each triangle, choose a note x; that has been picked
on the top and do not include it in the vertex cover. Include the other two nodes.

e Assumeys =0, y>=1.
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Running example: ¢ = (X1 X1vX2) ~("X1+v X2+ '™X2) ~ ("X1+v X2+ X2)



One direction

e Claim: The vertex cover has size k =d + 2m
e Each variable is selected at the top (either as xi or as "x).

e For each clause, we select two nodes at the bottom.



Other direction

e |If ¢ is not satisfiable => G does not have any vertex
cover of size at most k.



Other direction

e |If ¢ is not satisfiable => G does not have any vertex
cover of size at most k.

e (G has a vertex cover of size at most k. => ¢ is
satisfiable.
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Other direction

e (G has a vertex cover of size at most k. => ¢ is
satisfiable.

e et C beavertex coverofsizek=d+2m in G.

e Since it is a vertex cover, it must include at least two out
of three nodes in each “clause gadget” at the bottom.

e This means that at least 2m nodes of C are at the
bottom.

e This means that at most d nodes of C are at the top.



Other direction

 This means that at most d nodes of C are at the top.

e TJo satisfy the edges at the top, in each “variable
gadget”, at least one node must be included in C.



Example

e TJo satisfy the edges at the top, in each “variable gadget”, at
least one node must be included in C.
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Example

e TJo satisfy the edges at the top, in each “variable gadget”, at
least one node must be included in C.
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Other direction

 This means that at most d nodes of C are at the top.

e TJo satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.



Other direction

 This means that at most d nodes of C are at the top.

e TJo satisfy the edges between the top and the
bottom, in each “variable gadget”, at least one node
must be included in C.

e From the two statements above, in each “variable
gadget”, exactly one node must be included in C.



Satisfying the formula
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e Consider the truth assignment corresponding to the nodes of the
vertex cover C on the top (in the variable gadgets).

e Note that we either choose x; or 'xjto be 1, but not both.

* From the statement “in each “variable gadget”, exactly one node
must be included in C”.

* Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

e This means that there is one variable of the clause that is set to 1.



Satisfying the formula

e Consider the truth assignment corresponding to the nodes of the
vertex cover C on the top (in the variable gadgets).

e Note that we either choose x; or 'xjto be 1, but not both.

* From the statement “in each “variable gadget”, exactly one node
must be included in C”.

* Since all “cross” edges are covered, there must be one endpoint on
the top (in the “variable gadget”) that is in C.

e This means that there is one variable of the clause that is set to 1.

e Thus the clause is satisfied.



Example

e TJo satisfy the edges at the top, in each “variable gadget”, at
least one node must be included in C.
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Vertex Cover

e Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
Input: A graph G=(V, E)
Output: A minimum vertex cover.



Vertex Cover
decision version

e Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.



From optimisation to
decision

 We are given an optimisation problem P (assume
minimisation).

e E.g., find the minimum vertex cover.
 We introduce a threshold k.

e The decision version Pqbecomes: Given an instance of P
and the threshold k as input, is there a solution to P of
value at most k?

e E.g., is there a vertex cover of size at most k?
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Optimisation vs decision

e |f we can solve P in polynomial time, we can solve Pgin
polynomial time. (why?)

 This implies that if the decision version is NP-hard, so is
the optimisation version.

 Note: It is generally not correct to say that an optimisation
problem is NP-complete!

Often the opposite is also true.

* |f we can solve Pqin polynomial time, we can solve P In
polynomial time.



Optimisation vs decision

e Vertex Cover (Optimisation)
Input: A graph G=(V, E)
Output: A minimum vertex cover.

e Vertex Cover (Decision)
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.



Optimisation vs decision

 Vertex Cover Size (Optimisation)
Input: A graph G=(V, E)
Output: The size of a minimum vertex cover.

e Vertex Cover (Decision)
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.
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Optimisation vs decision

 Vertex Cover Size (Optimisation)
Input: A graph G=(V, E)
Output: The size of a minimum vertex cover.

e Vertex Cover (Decision)
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.
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e Vertex Cover (Optimisation)
Input: A graph G=(V, E)
Output: A minimum vertex cover.

e Vertex Cover (Decision)
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.
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Vertex Cover

* First, find the value k* of the minimum vertex cover using the algorithm for VCaq.
* Pick a vertex v in the graph.
* Remove it (and the incident edges) to get graph G - {v}.

* Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

* Check if the graph G - {v} has a vertex cover of size at most k*-1.
* Yes: Include v in the vertex cover.

e No: Do not include v in the vertex cover.



Vertex Cover

* First, find the value k* of the minimum vertex cover using the algorithm for VCaq.
* Pick a vertex v in the graph.
* Remove it (and the incident edges) to get graph G - {v}.

* Property: If v was in any minimum vertex cover, G - {v} has a minimum
vertex cover of size k*-1.

* Check if the graph G - {v} has a vertex cover of size at most k*-1.
* Yes: Include v Iin the vertex cover.
e No: Do not include v in the vertex cover.

e Then move to the next vertex.



The subset sum problem

e We are given a set of nitems {7, 2, ..., n}.
* Each item / has a non-negative integer weight wi.
 We are given an integer bound W.

e (Goal: Select a subset S of the items such that Z w, < W
eS
and Z W; IS maximised.
ieS



Equivalent formulation
decision version

We are givenaset T of nitems {7, 2, ... , n}.

Each item / has a non-negative integer weight wi.

We are given an integer bound W.

Goal: Decide if there exists a subset S of the items such

that

sz‘:W

eS



Optimisation vs decision

e |f we can solve P in polynomial time, we can solve Pqin
polynomial time. (why?)

* This implies that if the decision version is NP-hard, so
IS the optimisation version.

e Often the opposite is also true.

* |f we can solve Pgin polynomial time, we can solve P in
polynomial time.
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We did this for VC. Can we also do it for SS?



