
Introduction to Algorithms and 
Data Structures


Vertex Cover and Other NP-complete problems



Polynomial Time Reduction
• We are given a problem A that we want to solve.


• We can reduce solving problem A to solving some other 
problem B.


• Assume that we had an algorithm ALGB for solving problem 
B, which we can use at cost O(1).


• We can construct an algorithm ALGA for solving problem A, 
which uses calls to the algorithm ALGB  as a subroutine.


• If ALGA is a polynomial time algorithm, then this is a 
polynomial time reduction.



Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…


Do stuff …


 
 

ALGA

ALGB

instance  
transformation 



Types of reductions
• Turing reduction: 

• Argument: Here is an algorithm which runs in polynomial time solving problem 
A, using polynomially many calls to an oracle for problem B.


• Many-one reduction: 

• Argument: 


• If z is a solution to instance I of problem A, then z’ is a solution of instance 
f(I) to problem B.


• If z is not a solution to instance I of problem A, then z’ is not a solution of 
instance f(I) to problem B.


• Equivalently: If z’ is a solution of instance f(I) to problem B, then z is a 
solution to instance I of problem A.



How to work with reductions

• Positive: Assume that I want to solve problem A and I know how 
to solve problem B in polynomial time.


• I can try to come up with a polynomial time reduction A ≤p B, 
which will give me a polynomial time algorithm for solving A.


• Contrapositive: Assume that there is a problem A for which it is 
unlikely that there is a polynomial time algorithm that solves it.


• If I come up with a polynomial time reduction A ≤p B, it is also 
unlikely that there is a polynomial time algorithm that solves B.


• B is “at least as hard to solve as” A, because if I could solve B, 
I could also solve A.
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3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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3 SAT is NP-complete
• 3 SAT is in NP

• 3 SAT is NP-hard.

• Remarks: 


• The first problem shown to be NP-complete was the SAT 
problem (more general than 3 SAT), and this reduces to 
3SAT.


• Several textbooks start from Circuit SAT, a version of the 
SAT problem defined on circuits with boolean gates AND, 
OR or NOT. 
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Proving NP-completeness
• Suppose that you are given a problem A and you want to 

prove that it is NP-complete.

• First, prove that A is in NP.


• Usually by observing that a solution is efficiently 
checkable.

• Then prove that A is NP-hard.


• Construct a polynomial time reduction from some NP-
complete (or just NP-hard) problem P.



Enough with the definitions. 
Let’s see how it works.

• We will prove that a well-known problem on graphs, 
called Vertex Cover is NP-complete.



Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.
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Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
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least one endpoint in C.
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Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.
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Vertex cover

• Vertex Cover is in NP.

• Assume that we are given a vertex cover. 


• We can check that is has size k and that it is a vertex 
cover in polynomial time.
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Vertex cover

• Vertex Cover is in NP-hard.

• We will construct a polynomial time reduction from 3SAT.


• i.e., we will prove that 3SAT ≤p Vertex Cover.



The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.


• We construct, in polynomial time, an instance <G, k> of 
Vertex Cover such that


• If φ is satisfiable => G has a vertex cover of size at 
most k.


• If φ is not satisfiable => G does not have any vertex 
cover of size at most k.



The reduction
• For every variable x in φ, we create two nodes x and ⌝x in 

G and we connect them with an edge e = (x , ⌝x).

Running example: φ = (x1 ⌵ x1 ⌵ x2 ) ⌃ (⌝x1 ⌵ ⌝x2 ⌵ ⌝x2 ) ⌃  (⌝x1 ⌵ x2 ⌵ x2 )
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The reduction
• For every clause l = (l 1, l2 , l3 ) in φ, we create three nodes   

l 1, l2 , l3 in G and we connect them all with each other.

x1 ⌝x1 x2 ⌝x2
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The reduction

• Let φ be a 3-CNF formula with m clauses and d variables.


• We construct, in polynomial time, an instance <G, k> of 
Vertex Cover, with k = d + 2m such that


• If φ is satisfiable => G has a vertex cover of size at 
most k.
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One direction

• If φ is satisfiable => G has a vertex cover of size at most k.

• Let (y1, y2 , … , yk) in {0,1}n be a satisfying assignment for φ.

• For the nodes on the top: If yi = 1, include node xi in the 
vertex cover C, otherwise, include node ⌝xi.

• For the nodes on the bottom: In each triangle, choose a 
note xi that has been picked on the top and do not include 
it in the vertex cover. Include the other two nodes.



Example
• For the nodes on the top: If yi = 1, include node xi in the vertex cover 

C, otherwise, include node ⌝xi.


• Assume y1 = 0, y2 = 1.
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Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 
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Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 
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One direction

• Claim: The set of nodes we have chosen is a vertex cover.


• Every edge on the top is incident to either node xi or 
node ⌝xi.


• Every edge on the bottom is incident to some node in 
the set, since we select two out of three nodes.


• Every edge between the top and to bottom is incident 
to some node.



Example
• For the nodes on the bottom: In each triangle, choose a note xi that has been picked 

on the top and do not include it in the vertex cover. Include the other two nodes. 


• Assume y1 = 0, y2 = 1.
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One direction
• Claim: The vertex cover has size k = d + 2m


• Each variable is selected at the top (either as xi or as ⌝xi).


• For each clause, we select two nodes at the bottom.



Other direction

• If φ is not satisfiable => G does not have any vertex 
cover of size at most k.
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• If φ is not satisfiable => G does not have any vertex 
cover of size at most k.

• G has a vertex cover of size at most k. => φ is 
satisfiable.
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• G has a vertex cover of size at most k. => φ is 
satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two 
out of three nodes in each “clause gadget” at the 
bottom.
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Other direction
• G has a vertex cover of size at most k. => φ is 
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Other direction
• G has a vertex cover of size at most k. => φ is 

satisfiable.

• Let C be a vertex cover of size k = d + 2m in G.

• Since it is a vertex cover, it must include at least two out 
of three nodes in each “clause gadget” at the bottom.

• This means that at least 2m nodes of C are at the 
bottom.

• This means that at most d nodes of C are at the top.
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• To satisfy the edges at the top, in each “variable 
gadget”, at least one node must be included in C.
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Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the 
bottom, in each “variable gadget”, at least one node 
must be included in C.



Other direction

• This means that at most d nodes of C are at the top.

• To satisfy the edges between the top and the 
bottom, in each “variable gadget”, at least one node 
must be included in C.

• From the two statements above, in each “variable 
gadget”, exactly one node must be included in C.
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Satisfying the formula
• Consider the truth assignment corresponding to the nodes of the 

vertex cover C on the top (in the variable gadgets).

• Note that we either choose xi or ⌝xi to be 1, but not both.

• From the statement “in each “variable gadget”, exactly one node 
must be included in C”.

• Since all “cross” edges are covered, there must be one endpoint on 
the top (in the “variable gadget”) that is in C.

• This means that there is one variable of the clause that is set to 1.

• Thus the clause is satisfied.



Example
• To satisfy the edges at the top, in each “variable gadget”, at 

least one node must be included in C.

x1 ⌝x1 x2 ⌝x2
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Vertex Cover

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.



Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



From optimisation to 
decision

• We are given an optimisation problem P (assume 
minimisation).


• E.g., find the minimum vertex cover.


• We introduce a threshold k.


• The decision version Pd becomes: Given an instance of P 
and the threshold k as input, is there a solution to P of 
value at most k?


• E.g., is there a vertex cover of size at most k?



Optimisation vs decision
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Optimisation vs decision
• If we can solve P in polynomial time, we can solve Pd in 

polynomial time. (why?)

• This implies that if the decision version is NP-hard, so is 
the optimisation version.

• Note: It is generally not correct to say that an optimisation 
problem is NP-complete!

• Often the opposite is also true.

• If we can solve Pd in polynomial time, we can solve P in 
polynomial time.



Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.
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Optimisation vs decision

• Vertex Cover Size (Optimisation) 
Input: A graph G=(V, E) 
Output: The size of a minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Optimisation vs decision

• Vertex Cover (Optimisation) 
Input: A graph G=(V, E) 
Output: A minimum vertex cover.


• Vertex Cover (Decision) 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



Vertex Cover



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

• No: Do not include v in the vertex cover. 



Vertex Cover
• First, find the value k* of the minimum vertex cover using the algorithm for VCd.

• Pick a vertex v in the graph.

• Remove it (and the incident edges) to get graph G - {v}.

• Property: If v was in any minimum vertex cover, G - {v} has a minimum 
vertex cover of size k*-1.

• Check if the graph G - {v} has a vertex cover of size at most k*-1.

• Yes: Include v in the vertex cover.

• No: Do not include v in the vertex cover. 

• Then move to the next vertex. 



The subset sum problem

• We are given a set of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Select a subset S of the items such that  
 
and                 is maximised.

∑
i∈S

wi ≤ W

∑
i∈S

wi



Equivalent formulation

decision version

• We are given a set T of n items {1, 2, … , n}.


• Each item i has a non-negative integer weight wi.


• We are given an integer bound W.


• Goal: Decide if there exists a subset S of the items such 
that 

∑
i∈S

wi = W



Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in 
polynomial time. (why?)


• This implies that if the decision version is NP-hard, so 
is the optimisation version.


• Often the opposite is also true.


• If we can solve Pd in polynomial time, we can solve P in 
polynomial time.



Optimisation vs decision

• If we can solve P in polynomial time, we can solve Pd in 
polynomial time. (why?)


• This implies that if the decision version is NP-hard, so 
is the optimisation version.


• Often the opposite is also true.


• If we can solve Pd in polynomial time, we can solve P in 
polynomial time.

We did this for VC. Can we also do it for SS?


