Introduction to Algorithms and Data Structures

Vertex Cover and Other NP-complete problems

Polynomial Time Reduction

- We are given a problem A that we want to solve.
- We can reduce solving problem A to solving some other problem B.
- Assume that we had an algorithm ALGB for solving problem B, which we can use at cost $\mathbf{O}(1)$.
- We can construct an algorithm ALGA for solving problem A, which uses calls to the algorithm ALGB as a subroutine.
- If A^{A} is a polynomial time algorithm, then this is a polynomial time reduction.

Pictorially

Types of reductions

- Turing reduction:
- Argument: Here is an algorithm which runs in polynomial time solving problem A, using polynomially many calls to an oracle for problem B.
- Many-one reduction:
- Argument:
- If z is a solution to instance I of problem A, then z^{\prime} is a solution of instance $f(I)$ to problem B.
- If z is not a solution to instance I of problem A, then z ' is not a solution of instance $f(I)$ to problem B.
- Equivalently: If z^{\prime} is a solution of instance $f(I)$ to problem B, then z is a solution to instance I of problem A.

How to work with reductions

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
- I can try to come up with a polynomial time reduction $A \leq p$ B, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
- If I come up with a polynomial time reduction $A \leq p B$, it is also unlikely that there is a polynomial time algorithm that solves B.
- B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

How to work with reductions

- Positive: Assume that I want to solve problem A and I know how to solve problem B in polynomial time.
- I can try to come up with a polynomial time reduction $A \leq p B$, which will give me a polynomial time algorithm for solving A.
- Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves it.
- If I come up with a polynomial time reduction $A \leq p B$, it is also unlikely that there is a polynomial time algorithm that solves B.
- B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee{ }^{\wedge} x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee{ }^{\wedge} x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee{ }^{\wedge} x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee{ }^{\wedge} x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem 3SAT : Decide if the input formula ϕ has a satisfying assignment.

3 SAT is NP-complete

3 SAT is NP-complete

- 3 SAT is in NP

3 SAT is NP-complete

- 3 SAT is in NP
- 3 SAT is NP-hard.

3 SAT is NP-complete

- 3 SAT is in NP
- 3 SAT is NP-hard.
- Remarks:
- The first problem shown to be NP-complete was the SAT problem (more general than 3 SAT), and this reduces to 3SAT.
- Several textbooks start from Circuit SAT, a version of the SAT problem defined on circuits with boolean gates AND, OR or NOT.

Proving NP-completeness

Proving NP-completeness

- Suppose that you are given a problem A and you want to prove that it is NP-complete.

Proving NP-completeness

- Suppose that you are given a problem A and you want to prove that it is NP-complete.
- First, prove that A is in NP.
- Usually by observing that a solution is efficiently checkable.

Proving NP-completeness

- Suppose that you are given a problem A and you want to prove that it is NP-complete.
- First, prove that A is in NP.
- Usually by observing that a solution is efficiently checkable.
- Then prove that A is NP-hard.
- Construct a polynomial time reduction from some NPcomplete (or just NP-hard) problem P.

Enough with the definitions. Let's see how it works.

- We will prove that a well-known problem on graphs, called Vertex Cover is NP-complete.

Vertex Cover

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph G=(V, E)
Output: A minimum vertex cover.

Example

Example

Example

Example

Example

A vertex cover

Example

Example

Example

Example

A minimum vertex cover

Vertex Cover

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph G=(V, E)
Output: A minimum vertex cover.

Vertex Cover decision version

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

Vertex cover

Vertex cover

- Vertex Cover is in NP.

Vertex cover

- Vertex Cover is in NP.
- Assume that we are given a vertex cover.
- We can check that is has size k and that it is a vertex cover in polynomial time.

Vertex cover

Vertex cover

- Vertex Cover is in NP-hard.

Vertex cover

- Vertex Cover is in NP-hard.
- We will construct a polynomial time reduction from 3SAT.
- i.e., we will prove that 3 SAT $\leq p$ Vertex Cover.

The reduction

- Let ϕ be a 3-CNF formula with m clauses and d variables.
- We construct, in polynomial time, an instance <G, $\mathrm{k}>$ of Vertex Cover such that
- If ϕ is satisfiable => G has a vertex cover of size at most k.
- If ϕ is not satisfiable => G does not have any vertex cover of size at most k .

The reduction

- For every variable x in ϕ, we create two nodes x and ${ }^{7} x$ in G and we connect them with an edge $e=\left(x,{ }^{7} x\right)$.

[^0]
The reduction

- For every variable x in ϕ, we create two nodes x and ${ }^{7} x$ in G and we connect them with an edge $e=\left(x,{ }^{7} x\right)$.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- For every clause $\ell=\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$ in ϕ, we create three nodes ℓ_{1}, l_{2}, l_{3} in G and we connect them all with each other.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- We add an edge between all nodes with the same label on the top and on the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

The reduction

- Let ϕ be a 3-CNF formula with m clauses and d variables.
- We construct, in polynomial time, an instance <G, $\mathrm{k}>$ of Vertex Cover, with $k=d+2 m$ such that
- If ϕ is satisfiable => G has a vertex cover of size at most k .
- If ϕ is not satisfiable => G does not have any vertex cover of size at most k .

One direction

One direction

- If ϕ is satisfiable $=>G$ has a vertex cover of size at most k.

One direction

- If ϕ is satisfiable $=>G$ has a vertex cover of size at most k.
- Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $\{0,1\}^{n}$ be a satisfying assignment for ϕ.

One direction

- If ϕ is satisfiable $=>G$ has a vertex cover of size at most k.
- Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $\{0,1\}^{n}$ be a satisfying assignment for ϕ.
- For the nodes on the top: If $y_{i}=1$, include node x_{i} in the vertex cover C, otherwise, include node ${ }^{7} x_{i}$.

One direction

- If ϕ is satisfiable $=>G$ has a vertex cover of size at most k.
- Let $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $\{0,1\}^{n}$ be a satisfying assignment for ϕ.
- For the nodes on the top: If $y_{i}=1$, include node x_{i} in the vertex cover C, otherwise, include node ${ }^{\urcorner} x_{i}$.
- For the nodes on the bottom: In each triangle, choose a note x_{i} that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.

Example

- For the nodes on the top: If $y_{i}=1$, include node x_{i} in the vertex cover C, otherwise, include node ${ }^{7} \mathrm{x}$.
- Assume $\mathrm{y}_{1}=0, \mathrm{y}_{2}=1$.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

Example

- For the nodes on the top: If $y_{i}=1$, include node x_{i} in the vertex cover C, otherwise, include node ${ }^{7} \mathrm{x}$.
- Assume $\mathrm{y}_{1}=0, \mathrm{y}_{2}=1$.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

Example

- For the nodes on the bottom: In each triangle, choose a note x_{i} that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.
- Assume $\mathrm{y}_{1}=0, \mathrm{y}_{2}=1$.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

Example

- For the nodes on the bottom: In each triangle, choose a note x_{i} that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.
- Assume $\mathrm{y}_{1}=0, \mathrm{y}_{2}=1$.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

One direction

- Claim: The set of nodes we have chosen is a vertex cover.
- Every edge on the top is incident to either node x_{i} or node ${ }^{7} x_{i}$.
- Every edge on the bottom is incident to some node in the set, since we select two out of three nodes.
- Every edge between the top and to bottom is incident to some node.

Example

- For the nodes on the bottom: In each triangle, choose a note x_{i} that has been picked on the top and do not include it in the vertex cover. Include the other two nodes.
- Assume $\mathrm{y}_{1}=0, \mathrm{y}_{2}=1$.

Running example: $\Phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

One direction

- Claim: The vertex cover has size $k=d+2 m$
- Each variable is selected at the top (either as x_{i} or as ${ }^{7} x_{i}$).
- For each clause, we select two nodes at the bottom.

Other direction

- If ϕ is not satisfiable => G does not have any vertex cover of size at most k .

Other direction

- If ϕ is not satisfiable $=>G$ does not have any vertex cover of size at most k .
- G has a vertex cover of size at most $k .=>\phi$ is satisfiable.

Other direction

- G has a vertex cover of size at most k. $=>\phi$ is satisfiable.

Other direction

- G has a vertex cover of size at most $k .=>\phi$ is satisfiable.
- Let C be a vertex cover of size $k=d+2 m$ in G.

Other direction

- G has a vertex cover of size at most $\mathrm{k} .=>\phi$ is satisfiable.
- Let C be a vertex cover of size $k=d+2 m$ in G.
- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Example

- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Running example: $\Phi=\left(\mathbf{x}_{1} \vee \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{X}_{2} \vee \mathrm{x}_{2}\right)$

Example

- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Running example: $\Phi=\left(x_{1} \vee \mathbf{x}_{1} \vee \mathbf{x}_{2}\right) \wedge\left({ }^{7} \mathbf{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{x}_{2}\right)$

Other direction

- G has a vertex cover of size at most $\mathrm{k} .=>\phi$ is satisfiable.
- Let C be a vertex cover of size $k=d+2 m$ in G.
- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.

Other direction

- G has a vertex cover of size at most $\mathrm{k} .=>\phi$ is satisfiable.
- Let C be a vertex cover of size $k=d+2 m$ in G.
- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.
- This means that at least $2 m$ nodes of C are at the bottom.

Other direction

- G has a vertex cover of size at most $\mathrm{k} .=>\phi$ is satisfiable.
- Let C be a vertex cover of size $k=d+2 m$ in G.
- Since it is a vertex cover, it must include at least two out of three nodes in each "clause gadget" at the bottom.
- This means that at least $2 m$ nodes of C are at the bottom.
- This means that at most d nodes of C are at the top.

Other direction

- This means that at most d nodes of C are at the top.
- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in C.

Example

- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in C.

Running example: $\Phi=\left(x_{1} \vee \mathbf{x}_{1} \vee \mathbf{x}_{2}\right) \wedge\left({ }^{7} \mathbf{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{x}_{2}\right)$

Example

- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in C.

Running example: $\Phi=\left(x_{1} \vee \mathbf{x}_{1} \vee \mathbf{x}_{2}\right) \wedge\left({ }^{7} \mathbf{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{x}_{2}\right)$

Other direction

- This means that at most d nodes of C are at the top.
- To satisfy the edges between the top and the bottom, in each "variable gadget", at least one node must be included in C .

Other direction

- This means that at most d nodes of C are at the top.
- To satisfy the edges between the top and the bottom, in each "variable gadget", at least one node must be included in C .
- From the two statements above, in each "variable gadget", exactly one node must be included in C.

Satisfying the formula

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
- Note that we either choose x_{i} or ${ }^{\urcorner} x_{i}$ to be 1 , but not both.

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
- Note that we either choose x_{i} or ${ }^{7} x_{i}$ to be 1 , but not both.
- From the statement "in each "variable gadget", exactly one node must be included in C".

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
- Note that we either choose x_{i} or ${ }^{7} x_{i}$ to be 1 , but not both.
- From the statement "in each "variable gadget", exactly one node must be included in C".
- Since all "cross" edges are covered, there must be one endpoint on the top (in the "variable gadget") that is in C .

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
- Note that we either choose x_{i} or ${ }^{\urcorner} x_{i}$ to be 1 , but not both.
- From the statement "in each "variable gadget", exactly one node must be included in C".
- Since all "cross" edges are covered, there must be one endpoint on the top (in the "variable gadget") that is in C .
- This means that there is one variable of the clause that is set to 1 .

Satisfying the formula

- Consider the truth assignment corresponding to the nodes of the vertex cover C on the top (in the variable gadgets).
- Note that we either choose x_{i} or ${ }^{\urcorner} x_{i}$ to be 1 , but not both.
- From the statement "in each "variable gadget", exactly one node must be included in C".
- Since all "cross" edges are covered, there must be one endpoint on the top (in the "variable gadget") that is in C .
- This means that there is one variable of the clause that is set to 1 .
- Thus the clause is satisfied.

Example

- To satisfy the edges at the top, in each "variable gadget", at least one node must be included in C.

Running example: $\Phi=\left(x_{1} \vee \mathbf{x}_{1} \vee \mathbf{x}_{2}\right) \wedge\left({ }^{7} \mathbf{x}_{1} \vee{ }^{7} \mathrm{x}_{2} \vee{ }^{7} \mathrm{x}_{2}\right) \wedge\left({ }^{7} \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{x}_{2}\right)$

Vertex Cover

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph G=(V, E)
Output: A minimum vertex cover.

Vertex Cover decision version

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

From optimisation to decision

- We are given an optimisation problem P (assume minimisation).
- E.g., find the minimum vertex cover.
- We introduce a threshold k.
- The decision version P_{d} becomes: Given an instance of P and the threshold k as input, is there a solution to P of value at most k ?
- E.g., is there a vertex cover of size at most k ?

Optimisation vs decision

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.
- Note: It is generally not correct to say that an optimisation problem is NP-complete!

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.
- Note: It is generally not correct to say that an optimisation problem is NP-complete!
- Often the opposite is also true.

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.
- Note: It is generally not correct to say that an optimisation problem is NP-complete!
- Often the opposite is also true.
- If we can solve P_{d} in polynomial time, we can solve P in polynomial time.

Optimisation vs decision

- Vertex Cover (Optimisation)

Input: A graph G=(V, E)
Output: A minimum vertex cover.

- Vertex Cover (Decision)

Input: A graph $G=(V, E)$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

Optimisation vs decision

- Vertex Cover Size (Optimisation)

Input: A graph G=(V, E)
Output: The size of a minimum vertex cover.

- Vertex Cover (Decision)

Input: A graph $G=(V, E)$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

Vertex Cover Size

Vertex Cover Size

$$
k=1 ?
$$

VC (decision)

Vertex Cover Size

Vertex Cover Size

Vertex Cover Size

VC (decision)

Vertex Cover Size

Vertex Cover Size

Vertex Cover Size

$$
k=1 ?
$$

VC (decision)

Vertex Cover Size

Optimisation vs decision

- Vertex Cover Size (Optimisation)

Input: A graph G=(V, E)
Output: The size of a minimum vertex cover.

- Vertex Cover (Decision)

Input: A graph $G=(V, E)$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

Optimisation vs decision

- Vertex Cover (Optimisation)

Input: A graph G=(V, E)
Output: A minimum vertex cover.

- Vertex Cover (Decision)

Input: A graph $G=(V, E)$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

Vertex Cover

Vertex Cover

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.

Vertex Cover

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.

Vertex Cover

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $\mathrm{G}-\{\mathrm{v}\}$.

Nererner

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $G-\{v\}$.
- Property: If v was in any minimum vertex cover, $G-\{v\}$ has a minimum vertex cover of size $\mathrm{k}^{\star}-1$.

Nererner

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $G-\{v\}$.
- Property: If v was in any minimum vertex cover, $G-\{v\}$ has a minimum vertex cover of size $\mathrm{k}^{\star}-1$.
- Check if the graph $G-\{v\}$ has a vertex cover of size at most $k^{*}-1$.

Nererner

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $G-\{v\}$.
- Property: If v was in any minimum vertex cover, $G-\{v\}$ has a minimum vertex cover of size $\mathrm{k}^{\star}-1$.
- Check if the graph $G-\{v\}$ has a vertex cover of size at most $k^{*}-1$.
- Yes: Include v in the vertex cover.

Nererner

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $\mathrm{G}-\{\mathrm{v}\}$.
- Property: If v was in any minimum vertex cover, $G-\{v\}$ has a minimum vertex cover of size $\mathrm{k}^{\star}-1$.
- Check if the graph $G-\{v\}$ has a vertex cover of size at most $k^{*}-1$.
- Yes: Include v in the vertex cover.
- No: Do not include v in the vertex cover.

Nerener

- First, find the value k^{*} of the minimum vertex cover using the algorithm for VC_{d}.
- Pick a vertex v in the graph.
- Remove it (and the incident edges) to get graph $\mathrm{G}-\{\mathrm{v}\}$.
- Property: If v was in any minimum vertex cover, $G-\{v\}$ has a minimum vertex cover of size $\mathrm{k}^{\star}-1$.
- Check if the graph $G-\{v\}$ has a vertex cover of size at most $k^{*}-1$.
- Yes: Include v in the vertex cover.
- No: Do not include v in the vertex cover.
- Then move to the next vertex.

The subset sum problem

- We are given a set of n items $\{1,2, \ldots, n\}$.
- Each item i has a non-negative integer weight w_{i}.
- We are given an integer bound W.
- Goal: Select a subset S of the items such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} w_{i}$ is maximised.

Equivalent formulation decision version

- We are given a set T of n items $\{1,2, \ldots, n\}$.
- Each item i has a non-negative integer weight w_{i}.
- We are given an integer bound W.
- Goal: Decide if there exists a subset S of the items such that

$$
\sum_{i \in S} w_{i}=W
$$

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.
- Often the opposite is also true.
- If we can solve P_{d} in polynomial time, we can solve P in polynomial time.

Optimisation vs decision

- If we can solve P in polynomial time, we can solve P_{d} in polynomial time. (why?)
- This implies that if the decision version is NP-hard, so is the optimisation version.
- Often the opposite is also true.
- If we can solve P_{d} in polynomial time, we can solve P in polynomial time.

We did this for VC. Can we also do it for SS?

[^0]: Running example: $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left({ }^{7} x_{1} \vee{ }^{7} x_{2} \vee{ }^{7} x_{2}\right) \wedge\left({ }^{7} x_{1} \vee x_{2} \vee x_{2}\right)$

