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NP-completeness: A closer look



The class NP
• Stands for “non deterministic polynomial time”.


• Problems that can be solved in polynomial time by a non-
deterministic Turing machine. 


• More intuitive definition: 


• Problems such that, if a solution is given, it can be 
checked that it is indeed a solution in polynomial time.


• Efficiently verifiable.
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3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3 ) ⌃ (x2 ⌵ x6 ⌵ ⌝x5 ) ⌃ … ⌃  (x3 ⌵ x8 ⌵ x12 )


• (“An AND of ORs”).


• Each clause has three literals.


• Truth assignment: A value in {0,1} for each variable xi.


• Satisfying assignment: A truth assignment which makes the formula 
evaluate to 1 (= true).


• Computational problem 3SAT : Decide if the input formula φ has a 
satisfying assignment.
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Vertex Cover  
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset 
of the nodes such that every edge e in the graph has at 
least one endpoint in C.


• Definition: A minimum vertex cover is a vertex cover of 
the smallest possible size.


• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.



The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT



The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover



Other problems in NP



Other problems in NP
• Independent Set in graph G: A set of nodes in the graph, 

such that there is no edge between any two nodes in the 
set.



Other problems in NP
• Independent Set in graph G: A set of nodes in the graph, 

such that there is no edge between any two nodes in the 
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum 
size.
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• Independent Set in graph G: A set of nodes in the graph, 

such that there is no edge between any two nodes in the 
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum 
size.

• Maximum Independent Set (decision version) 
Given a graph G, and an integer k, is there an 
independent set of size at least k?
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Other problems in NP
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of 
subsets of U and a number k, does there exist a 
collection of at least k of these sets such that no two of 
them intersect?

• Set Cover 
Given a set U of elements, a collection S1, … , Sm of 
subsets of U and a number k, does there exist a 
collection of at most k of these sets whose union is equal 
to U?
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• 3-Dimensional Matching 
Given disjoint sets X, Y and Z each of size n, and given a 
set T (which is a subset of X x Y x Z) of ordered triples, 
does there exist a set of n triples in T, so that each 
element of X U Y U Z is contained in exactly in one of 
these triples?
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• k-Colouring of a graph G: A function f: V → {1, …, k} so 
that for every edge (u, v) we have that f(u) ≠ f(v).

• 3-Colouring 
Given a graph G, does it have a 3-Colouring?
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Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed 

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph 
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

• Traveling Salesman 
(def Kleinberg and Tardos, p. 474).
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NP-completeness

• A problem B is NP-complete if


• It is in NP.


• i.e., it has a polynomial-time verifiable solution.


• It is NP-hard.


• i.e., every problem in NP can be efficiently reduced 
to it.



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)
The proof uses a generic argument that if a problem has a solution which can 

be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)
The proof uses a generic argument that if a problem has a solution which can 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• What does the NP-completeness of SAT mean?

• It means that it is at least as hard to solve as any other 
problem in NP.

• In particular, if we had a polynomial-time algorithm for 
solving SAT, we could solve any other problem in NP, 
via the reduction (the arrow).



Wooclap!
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NP-completeness

• What does the NP-completeness of SAT mean?


• It means that it is at least as hard to solve as any other 
problem in NP.


• In particular, if we had a polynomial-time algorithm for 
solving SAT, we could solve any other problem in NP, 
via the reduction (the arrow).


• At this stage, that doesn’t necessarily say much.
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NP-completeness
• Some time passes, and we tried and tried to find a 

polynomial-time algorithm for SAT (or 3SAT) and we are still 
looking for one…

• This seems to suggest that SAT might be in some sense 
harder to solve than e.g., Interval Scheduling or Testing 
Bipartiteness. 

• We know of course that it is at least as hard to solve, by 
virtue of being NP-complete.

• But this seems to suggest that some problems in NP are 
harder than others.
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NP-completeness

• After a while, we gave up on SAT and decided to try to 
solve our new favourite problem, Vertex Cover, in 
polynomial time. 

• We tried hard and we failed… We are still looking for a 
polynomial-time algorithm.

• Hmm, maybe Vertex Cover is also harder to solve than, 
say, Interval Scheduling or Testing Bipartiteness…



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



NP-completeness



NP-completeness

• Vertex Cover is NP-complete.



NP-completeness

• Vertex Cover is NP-complete.

• This means that it is at least as hard as any problem in 
NP, including SAT.



NP-completeness

• Vertex Cover is NP-complete.

• This means that it is at least as hard as any problem in 
NP, including SAT.

• But we really tried to solve SAT in polynomial-time… No 
wonder we failed to solve Vertex Cover too!
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NP-completeness

• Ok, let’s try to solve Independent Set in polynomial time 
then.

• Arghh, we can’t solve that either!
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NP-completeness

• Independent Set is NP-complete.

• This means that it is at least as hard as any problem in 
NP, including SAT and Vertex Cover.

• But we really tried to solve SAT and Vertex Cover in 
polynomial-time… No wonder we failed to solve 
Independent Set too.
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NP-completeness
• 3SAT, Vertex Cover, Independent Set, Subset Sum, 

Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling 
Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

• Actually, this is only a very small subset of NP-complete 
problems. 

• Hundreds of other meaningful problems are NP-complete.

• We don’t know how to solve any one of those in polynomial-
time.
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The effect of NP-hardness
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The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do 
so.

• Then you discover that it can be reduced to one of all of these NP-complete 
problems.

• This means that if you succeeded in your quest, you would solve all of these 
problems in polynomial-time.

• That would mean that you are smarter than generations of researchers and 
pretty much anyone else that has studied computer science ever.

• I don’t know about you, but I would probably be convinced that I am not 
going to come up with a polynomial-time algorithm!
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Reduction strategies

• For now, we’ll tell you what to reduce from.

• And the reduction will be relatively simple.

• In general, the idea is to find a problem that looks similar 
to the one we are trying to prove NP-hardness for.

• Try to think of reductions you have seen in the past. 

• This takes time!



NP-completeness,  
a taxonomy

Independent Set 
Set Packing

Vertex Cover 
Set Cover

3D-Matching 
Graph Colouring

Hamiltonian Cycle 
Hamiltonian Path 

Traveling Salesman

Subset Sum 
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems
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NP-completeness
• So when a problem is NP-complete, this means:

• That it is in NP, and it is at least as hard to solve as any 
other problem in NP.

• That it is unlikely that we solve it in polynomial time, as 
that would imply that we solve all the NP-complete 
problems.

• That it is not solvable in polynomial time assuming 
.P ≠ NP
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NP-hardness is a worst-
case impossibility

• Let’s recall the NP-hardness proof for Vertex Cover.

x1 ⌝x1 x2 ⌝x2
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⌝x1
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• If I could decide Vertex Cover on this graph, I could 
decide 3SAT.
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NP-hardness is a worst-
case impossibility

• What about this graph? Can I decide Vertex Cover on this 
graph?

• “Choose one leave one” finds a minimum vertex cover.
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NP-hardness is a worst-
case impossibility

• For all we know, every other instance besides those used 
in the reduction could be easy to solve. 

• Usually not the case! In practice usually we don’t have 
good ways of solving NP-hard problems.

• Still, sometimes we can provably design polynomial 
algorithms on certain input structures. 

• For example, a minimum Vertex Cover on trees can be 
found in polynomial time using Dynamic Programming.
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NP-hardness  Exponential 
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

• Subexponential time:  or . nO(lg n) 2O( n)

• There are NP-complete problems that can be solved in 
subexponential time.

• Exponential Time Hypothesis (ETH): SAT requires exponential 
time to be solved.

• ETH ⇒ P ≠ NP
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NP-hardness vs NP-
completeness

• Every NP-complete problem is NP-hard. 

• Is every NP-hard problem NP-complete?

• Are there problems that are NP-hard but not in NP?
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Totally Quantified Boolean 
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of 
quantifiers. 
 

 
 
where 

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have 
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• We read “Does there exists  such that for every  there exists  
such that … such that for every , the formula  is satisfiable?”

x1 x2 x3
xn ϕ
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Totally Quantified Boolean 
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of 
quantifiers. 
 

 
 
where 

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have 
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• TQBF is NP-hard. Why?
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Totally Quantified Boolean 
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of quantifiers. 
 

 
 
where 

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have ∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• We read “Does there exists  such that for every  there exists  such 
that … such that for every , the formula  is satisfiable?”

x1 x2 x3
xn ϕ

• For a given  we have to check the values of  for all possible values of 
the remaining etc. Does not seem to be doable in polynomial time.

x1 x2
x4, x6,
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An interesting but important 
note

• We cannot categorically say that TQBF is not efficiently 
verifiable (i.e., that it is not in NP).

• In the same way as we cannot categorically say that SAT is 
not efficiently solvable (i.e., that it is not in P).

• But we have reasons to believe that SAT is not in P.

• Because then we would be able to solve all NP-complete 
problems.

• Similarly we have reasons to believe that TQBF is not in NP. 
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TQBF is PSPACE-complete
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Another NP-hard problem 
that is not in NP

• Informally: Given the description of an arbitrary computer 
program and an input to the program, determine if the 
program will terminate or not.

• This is the Halting Problem, which is NP-hard but it is 
undecidable. 

• i.e., it cannot be solved in any amount of time on any 
computer.

• More about that later!



Are all NP-complete 
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT



Are all NP-complete 
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

We solved those in  
pseudopolynomial time.



Are all NP-complete 
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set
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Hamiltonian Path

Traveling Salesman

SAT

3SAT

We solved those in  
pseudopolynomial time.

Could they be “easier” than SAT in some sense?
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Strong vs Weak NP-
hardness

• A problem P is strongly NP-hard if it remains NP-hard 
even when the numerical parameters in the input are 
given in unary representation.

• Otherwise, it is weakly NP-hard.

• Weakly NP-hard problems admit pseudopolynomial 
algorithms. 
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Are all NP-complete 
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

Another way to compare: Approximate Solutions
More about that over the next two lectures!


