Introduction to Algorithms and
Data Structures

NP-completeness: A closer look

The class NP

e Stands for “non deterministic polynomial time”.

* Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

e More intuitive definition:

* Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

* Efficiently verifiable.

The class NP

N =y s oy

- P 7 o N

= I

- L el T
gl 2
. B "ﬁ
Ry ~u Lo ama . R = -
_ = -~) i

The class NP

Interval Scheduling

The class NP

Interval Scheduling
Weighted Interval Scheduling

The class NP

Shortest Paths in Graphs

Interval Scheduling

Weighted Interval Scheduling

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

Subset Sum

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

Subset Sum
Knapsack

3 SAT

A CNF formula with m clauses and k literals.

O =X1vX5vX3)~(XavXev X5) ~ ..~ (X3 v X8 X12)
(“An AND of ORs”).

Each clause has three literals.

Truth assignment: A value in {0,1} for each variable xi.

Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

Computational problem 3SAT : Decide if the input formula ¢ has a
satisfying assignment.

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

Subset Sum
Knapsack

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

Subset Sum SSAT

Knapsack

Vertex Cover
decision version

e Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

e Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

e \ertex Cover
Input: A graph G=(V, E) and a number k
Output: Is there a vertex cover of size < k?.

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

Subset Sum SSAT

Knapsack

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Vertex Cover

Other problems in NP

Other problems in NP

* Independent Set in graph G: A set of nodes in the graph,
such that there is no edge between any two nodes in the
set.

Other problems in NP

* Independent Set in graph G: A set of nodes in the graph,
such that there is no edge between any two nodes in the

set.

e Maximum Independent Set
Given a graph G, find an independent set of maximum

size.

Other problems in NP

* Independent Set in graph G: A set of nodes in the graph,
such that there is no edge between any two nodes in the
set.

e Maximum Independent Set
Given a graph G, find an independent set of maximum
size.

e Maximum Independent Set (decision version)
Given a graph G, and an integer kK, is there an
independent set of size at least k?

Other problems in NP

Other problems in NP

 Set Packing
Given a set U of elements, a collection S+, ..., Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

Other problems in NP

 Set Packing
Given a set U of elements, a collection S+, ..., Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

e Set Cover
Given a set U of elements, a collection S+, ..., Sy of
subsets of U and a number k, does there exist a
collection of at most k of these sets whose union is equal
to U?

Other problems in NP

Other problems in NP

 3-Dimensional Matching
Given disjoint sets X, Y and Z each of size n, and given a
set T (which is a subset of X x Y x Z) of ordered triples,
does there exist a set of n triples in T, so that each
element of XU Y U Z is contained in exactly in one of
these triples?

Other problems in NP

Other problems in NP

e k-Colouring of a graph G: A functionf: V = {7, ..., k} so
that for every edge (u, v) we have that f(u) = f(v).

Other problems in NP

e k-Colouring of a graph G: A functionf: V = {7, ..., k} so
that for every edge (u, v) we have that f(u) = f(v).

e 3-Colouring
Given a graph G, does it have a 3-Colouring?

Other problems in NP

Other problems in NP

 Hamiltonian cycle in a directed graph G: A cycle in a directed
graph that visits each vertex exactly once.

Other problems in NP

 Hamiltonian cycle in a directed graph G: A cycle in a directed
graph that visits each vertex exactly once.

* Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

Other problems in NP

Hamiltonian cycle in a directed graph G: A cycle in a directed
graph that visits each vertex exactly once.

Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

Hamiltonian Cycle
Given a directed graph G, does it have a Hamiltonian Cycle?

Other problems in NP

Hamiltonian cycle in a directed graph G: A cycle in a directed
graph that visits each vertex exactly once.

Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

Hamiltonian Cycle
Given a directed graph G, does it have a Hamiltonian Cycle?

Hamiltonian Path
Given a directed graph G, does it have a Hamiltonian Path?

Other problems in NP

Hamiltonian cycle in a directed graph G: A cycle in a directed
graph that visits each vertex exactly once.

Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

Hamiltonian Cycle
Given a directed graph G, does it have a Hamiltonian Cycle?

Hamiltonian Path
Given a directed graph G, does it have a Hamiltonian Path?

Traveling Salesman
(def Kleinberg and Tardos, p. 474).

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Vertex Cover

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Vertex Cover
Independent Set

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
SSAT Set Packing

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Vertex Cover
Independent Set

Set Cover

Set Packing

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

3-Colouring

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

The class NP

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Testing Bipartiteness
Topological Sort

3SAT

Hamiltonian Cycle

3-Colouring

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

The class NP

Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness

Subset Sum
Knapsack

Topological Sort

3SAT

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

The class NP

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness

Subset Sum
Knapsack

Topological Sort

3SAT

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

NP-completeness

e A problem B is NP-complete if
e Jtisin NP.
* |.e., it has a polynomial-time verifiable solution.
e Jtis NP-hard.

* |.e., every problem in NP can be efficiently reduced
to it.

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
Set Cover
Subset Sum SSAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set

/ Set Cover

— .
Subset Sum — —> 3SAT — Set Packing

Knapsack / \ 3D-Matching

Hamiltonian Cycle
Hamiltonian Path

3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set

/ Set Cover

— .
Subset Sum — —> 3SAT — Set Packing

Knapsack / \ 3D-Matching

Hamiltonian Cycle
Hamiltonian Path

3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
3SAT Topological Sort Independent Set
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
\ 3SAT Topological Sort Independent Set
Set Cover
Subset Sum — — — Set Packing

F
Knapsack \ 3D-Matching

Hamiltonian Cycle 3 Cotour
Hamiltonian Path -Lolouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
\ 3SAT Topological Sort Independent Set
Set Cover
Subset Sum — — — Set Packing

F
Knapsack \ 3D-Matching

Hamiltonian Cycle 3 Cotour
Hamiltonian Path -Lolouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
33 AT Topologlcal Sort Independent Set
Set Cover
Subset Sum — — — Set Packing

F
Knapsack / \ 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

== - ’) =

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
33 AT Topologlcal Sort Independent Set
Set Cover
Subset Sum — — — Set Packing

F
Knapsack / \ 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

== - ’) =

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
33 AT Topologlcal Sort Independent Set

Set Cover

—

Subset Sum _— — Set Packing

F
Knapsack / \ 3D-Matching

Hamiltonian Cycle 3-Colouri ,
Hamiltonian Path -wolouning

Traveling Salesman 2 "~

The Cook-Levin Theorem (1971, 1973)

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover \
33 AT Topologlcal Sort Independent Set \
Set Cover ';
Subset Sum — — — Set Packing "

F
Knapsack / \ 3D-Matching

Hamiltonian Cycle 3-Colouri ,
Hamiltonian Path -wolouning

Traveling Salesman 2 "~

The Cook-Levin Theorem (1971, 1973)

The proof uses a generic argument that if a problem has a solution which can
be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

A
g, THE UNIVERSITY of EDINBURGH

P S
oINS

DRPS : Course Catalogue : School of Informatics :

Undergraduate Course: Introduction to Theoretical Computer Science (INFR10059)

Course Outline

School School of Informatics College College of Science and Engineering
Credit level (Normal year taken) SCQF Level 10 (Year 3 Undergraduate) Availability Available to all students

SCQF Credits 10 ECTS Credits 5

Summary

This course introduces the fundamental concepts of the theory of computer science, which include some of the greatest intellectual advances of the last century: what does ‘computing’ mean? Are all “computers’ basically the same? Can we tell whether our programs are ‘correct’ - and what does
“correct’ mean, anyway? Can we solve problems in reasonable time, and can we tell whether we can?

The course concentrates primarily on conceptual understanding, but adds enough detail to allow students to go on to further courses, and illustrates how the fundamental concepts are reflected throughout the discipline.
Course description The first section of the course asks the question, what does it mean to compute? We start with the finite automata introduced in earlier years, and then generalise to pushdown automata, and show that they have more power. Next we generalize further to very simple abstract general computers, and
argue they can do everything real computers can do. We then ask, can we solve every computational question? The answer, with which Turing shocked the mathematicians of the 1930s, is "no", with a remarkably easy but beautiful argument (introduced at the end of Inf2-1ADS INFR08026). We then

explore some different, but always equivalent, ways of defining "a computer”. We finish the section by asking how we can compare the difficulty of different problems, and introduce the idea of "reduction” as a way of compiling one problem into another. Technically, this covers register machines,
undecidability, Turing machines, and reductions.

The second section thinks about how hard it is to solve solvable problems, leading to one of the most important problems in all mathematics, and the foundation of internet security. We start by reprising Inf2-lADS INFR08026 analysis of algorithms, and then discuss the idea of classifying problems as
“tractable’ (easy) or ‘intractable’ (hard). We find that the idea of algorithms whose running time grows polynomially in the problem size is a good mathematical definition of "tractable’, though not always a practical one. After making this more precise, we ask what happens if we're allowed to just
check all the possible answers in parallel - does this give us more problem-solving power? The question is made precise by the concept of NP, and we show that there are "hardest" such problems, such as the famous Travelling Salesman. Although the question is easy to ask, nobody knows how to answer

it. This is P = NP - if you can solve it, you win a million dollars, and fame for as long as civilization lasts. So far, NP problems are very hard to solve in practice, so we discuss how to deal with them. We finish the section by talking about much harder problems still. Technically, this section covers P, NP,
hardness and completeness, Cook's Theorem, P = NP, and the complexity hierarchy above NP.

The third section takes brief look at a different way of seeing computation. Haskell needn't be seen as a programming language, it can be the computer itself. We'll show how the lambda-calculus (on which Haskell is based) can do all the computing our other models could, and how the halting problem
was actually first solved (or rather unsolved) within lambda-calculus.

Entry Requirements (not applicable to Visiting Students)

Pre-requisites Co-requisites
Prohibited Combinations

Other requirements This course is open to all Informatics students including those on joint degrees. It is also open to students in the School of
Mathematics.

Information for Visiting Students

Pre-requisites None

High Demand Course? Yes

Course Delivery Information

Academic year 2023/24, Available to all students (SV1) Quota: None
Course Start Semester 1

Timetable Timetable

Learning and Teaching activities (Further Info) Total Hours: 100 (Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 98)

Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Additional Information (Assessment)

An exam provides the main assessment. In order to ensure coverage of the three major sections, the format will be three compulsory easier questions, and a choice of one of two longer questions.

Assessed coursework will be issued at two points, containing mainly relatively straightforward exercises designed to reinforce basics, the first coursework being formative and the second being summative. Additional formative work in tutorial sheets will stretch those who wish

You should expect to spend approximately 15 hours on the coursework for this course.

Feedback Formative feedback is given verbally in tutorials, and in writing for the first exercise. Summative and formative feedback is given in writing for the second exercise.

Traveling Salesman

The Cook-Levin Theorem (1971, 1973)

The proof uses a generic argument that if a problem has a solution which can
be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

NP-completeness

NP-completeness

e What does the NP-completeness of SAT mean?

NP-completeness

e What does the NP-completeness of SAT mean?

* |t means that it is at least as hard to solve as any other
problem in NP.

NP-completeness

e What does the NP-completeness of SAT mean?

* |t means that it is at least as hard to solve as any other
problem in NP.

* |n particular, if we had a polynomial-time algorithm for
solving SAT, we could solve any other problem in NP,
via the reduction (the arrow).

Wooclap!

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
33 AT Topologlcal Sort Independent Set
Set Cover
Subset Sum — — — Set Packing

F
Knapsack / \ 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

== - ’) =

NP-completeness

e What does the NP-completeness of SAT mean?

* |t means that it is at least as hard to solve as any other
problem in NP.

* |n particular, if we had a polynomial-time algorithm for

solving SAT, we could solve any other problem in NP,
via the reduction (the arrow).

e At this stage, that doesn’t necessarily say much.

NP-completeness

NP-completeness

e Some time passes, and we tried and tried to find a
polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one...

NP-completeness

e Some time passes, and we tried and tried to find a
polynomial-time algorithm for SAT (or 3SAT) and we are still

looking for one...

* This seems to suggest that SAT might be in some sense
harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

NP-completeness

e Some time passes, and we tried and tried to find a
polynomial-time algorithm for SAT (or 3SAT) and we are still

looking for one...

* This seems to suggest that SAT might be in some sense
harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

* We know of course that it is at least as hard to solve, by
virtue of being NP-complete.

NP-completeness

e Some time passes, and we tried and tried to find a

polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one...

* This seems to suggest that SAT might be in some sense

harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

* We know of course that it is at least as hard to solve, by
virtue of being NP-complete.

e But this seems to suggest that some problems in NP are
harder than others.

NP-completeness

NP-completeness

e After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

NP-completeness

e After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

 We tried hard and we failed... We are still looking for a
polynomial-time algorithm.

NP-completeness

e After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

 We tried hard and we failed... We are still looking for a
polynomial-time algorithm.

* Hmm, maybe Vertex Cover is also harder to solve than,
say, Interval Scheduling or Testing Bipartiteness...

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Vertex Cover
Independent Set

Weighted Interval Scheduling Testing Bipartiteness
Topological

3SAT
Set Cover

Subset Sum — — 3 — Set Packing

F
AT
Knapsack / \ 3D-Matching

Hamiltonian Cycle
Hamiltonian Path

3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Vertex Cover
Independent Set

Weighted Interval Scheduling Testing Bipartiteness
Topological

3SAT
4 Set Cover
Subset Sum — — 3 — Set Packing

F
AT
Knapsack / \ 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

NP-completeness

e Vertex Cover is NP-complete.

NP-completeness

e Vertex Cover is NP-complete.

 This means that it is at least as hard as any problem in
NP, including SAT.

NP-completeness

e Vertex Cover is NP-complete.

 This means that it is at least as hard as any problem in
NP, including SAT.

e But we really tried to solve SAT in polynomial-time... No
wonder we failed to solve Vertex Cover too!

NP-completeness

NP-completeness

e Ok, let’s try to solve Independent Set in polynomial time
then.

NP-completeness

e Ok, let’s try to solve Independent Set in polynomial time
then.

 Arghh, we can’t solve that either!

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

oV
)

Interval Scheduling Minimum-cost Paths in Graphs ,
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover 7 \
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching
Hamiltonian Cycle 3-Colouri ,
Hamiltonian Path -wolouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

oV
)

Interval Scheduling Minimum-cost Paths in Graphs ,
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover 7 \
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching
Hamiltonian Cycle 3-Colouri ,
Hamiltonian Path -wolouring

Traveling Salesman 2 "~

NP-completeness

NP-completeness

* |Independent Set is NP-complete.

NP-completeness

* |Independent Set is NP-complete.

 This means that it is at least as hard as any problem in
NP, including SAT and Vertex Cover.

NP-completeness

* |Independent Set is NP-complete.

 This means that it is at least as hard as any problem in
NP, including SAT and Vertex Cover.

e But we really tried to solve SAT and Vertex Cover in
polynomial-time... No wonder we failed to solve
Independent Set too.

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Vertex Cover
Independent Set

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Vertex Cover
Independent Set

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Vertex Cover
Independent Set

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

3SAT
/ Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

3-Colouring

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

3-Colouring

NP-completeness

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

NP-completeness

NP-completeness

e 3SAI, Vertex Cover, Independent Set, Subset Sum,
Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling

Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

NP-completeness

e 3SAI, Vertex Cover, Independent Set, Subset Sum,
Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling

Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

* Actually, this is only a very small subset of NP-complete
problems.

NP-completeness

e 3SAI, Vertex Cover, Independent Set, Subset Sum,
Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling

Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

* Actually, this is only a very small subset of NP-complete
problems.

* Hundreds of other meaningful problems are NP-complete.

NP-completeness

e 3SAI, Vertex Cover, Independent Set, Subset Sum,
Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling

Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

* Actually, this is only a very small subset of NP-complete
problems.

* Hundreds of other meaningful problems are NP-complete.

* We don’t know how to solve any one of those in polynomial-
time.

The effect of NP-hardness

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

e You try to design a polynomial-time algorithm for it but you find it hard to do
SO.

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

e You try to design a polynomial-time algorithm for it but you find it hard to do
SO.

e Then you discover that it can be reduced to one of all of these NP-complete
problems.

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

e You try to design a polynomial-time algorithm for it but you find it hard to do
SO.

e Then you discover that it can be reduced to one of all of these NP-complete
problems.

e This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

e You try to design a polynomial-time algorithm for it but you find it hard to do
SO.

e Then you discover that it can be reduced to one of all of these NP-complete
problems.

e This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

e That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

The effect of NP-hardness

e Imagine that you have a new favourite problem P.

e You try to design a polynomial-time algorithm for it but you find it hard to do
SO.

e Then you discover that it can be reduced to one of all of these NP-complete
problems.

 This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

e That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

e | don’t know about you, but | would probably be convinced that | am not
going to come up with a polynomial-time algorithm!

Wooclap!

Reduction strategies

Reduction strategies

 For now, we'll tell you what to reduce from.

Reduction strategies

 For now, we'll tell you what to reduce from.

* And the reduction will be relatively simple.

Reduction strategies

 For now, we'll tell you what to reduce from.
* And the reduction will be relatively simple.

* |In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

Reduction strategies

For now, we’ll tell you what to reduce from.
And the reduction will be relatively simple.

In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

Try to think of reductions you have seen in the past.

Reduction strategies

For now, we’ll tell you what to reduce from.
And the reduction will be relatively simple.

In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

Try to think of reductions you have seen in the past.

e This takes time!

NP-completeness,
a taxonomy

Packing problems Covering problems Partitioning problems

Independent Set Vertex Cover 3D-Matching
Set Packing Set Cover Graph Colouring

Hamiltonian Cycle
Hamiltonian Path
Traveling Salesman

Subset Sum
Knapsack

Sequencing problems Numerical problems Constraint Satisfaction
problems

NP-completeness

NP-completeness

e So when a problem is NP-complete, this means:

NP-completeness

e So when a problem is NP-complete, this means:

e Thatitisin NP, and it is at least as hard to solve as any
other problem in NP.

NP-completeness

e So when a problem is NP-complete, this means:

e Thatitisin NP, and it is at least as hard to solve as any
other problem in NP.

 That it is unlikely that we solve it in polynomial time, as
that would imply that we solve all the NP-complete

problems.

NP-completeness

e So when a problem is NP-complete, this means:

e Thatitisin NP, and it is at least as hard to solve as any
other problem in NP.

 That it is unlikely that we solve it in polynomial time, as
that would imply that we solve all the NP-complete
problems.

 That it is not solvable in polynomial time assuming
P # NP.

Wooclap!

NP-hardness Is a worst-
case impossibility

X1 | X1

X‘ .
X2

80
o,

. ' .
X2

NP-hardness Is a worst-
case impossibility

e | et’s recall the NP-hardness proof for Vertex Cover.

NP-hardness Is a worst-
case impossibility

e | et’s recall the NP-hardness proof for Vertex Cover.

! -IX1 v . Q
X1) § '¢ " T '¢ . X2

e |f | could decide Vertex Cover on this graph, | could

decide 3SAT.

NP-hardness Is a worst-
case impossibility

O 0 0 0 00

NP-hardness Is a worst-
case impossibility

 \What about this graph? Can | decide Vertex Cover on this

graph?

O 0 0 0 00

NP-hardness Is a worst-
case impossibility

 \What about this graph? Can | decide Vertex Cover on this

graph?

O 0 0 0 00

e “Choose one leave one” finds a minimum vertex cover.

NP-hardness Is a worst-
case impossibility

NP-hardness Is a worst-
case impossibility

* An NP-hardness result does not mean that (unless P=NP)
we cannot solve the problem in polynomial time for any
instance.

NP-hardness Is a worst-
case impossibility

 An NP-hardness result does not mean that (unless P=NP)

we cannot solve the problem in polynomial time for any
instance.

* |t means that we cannot solve it in polynomial time for
every instance.

NP-hardness Is a worst-
case impossibility

 An NP-hardness result does not mean that (unless P=NP)

we cannot solve the problem in polynomial time for any
instance.

* |t means that we cannot solve it in polynomial time for
every instance.

 For all we know, every other instance besides those used
INn the reduction could be easy to solve.

NP-hardness Is a worst-
case impossibility

 For all we know, every other instance besides those used

In the reduction could be easy to solve.

NP-hardness Is a worst-
case impossibility

 For all we know, every other instance besides those used
In the reduction could be easy to solve.

e Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

NP-hardness Is a worst-
case impossibility

 For all we know, every other instance besides those used
In the reduction could be easy to solve.

e Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

e Still, sometimes we can provably design polynomial
algorithms on certain input structures.

NP-hardness Is a worst-
case impossibility

For all we know, every other instance besides those used
In the reduction could be easy to solve.

Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

Still, sometimes we can provably design polynomial
algorithms on certain input structures.

For example, a minimum Vertex Cover on frees can be
found in polynomial time using Dynamic Programming.

Wooclap!

NP-hardness # Exponential
Time

NP-hardness # Exponential
Time

e This is true even if P # NP.

NP-hardness # Exponential
Time
e This is true even if P # NP.

* Roughgarden: Acceptable Inaccuracy #3.

NP-hardness # Exponential
Time
e This is true even if P # NP.

* Roughgarden: Acceptable Inaccuracy #3.

e Subexponential time: n?18™ or 200/

NP-hardness # Exponential
Time
This is true even if P # NP.
Roughgarden: Acceptable Inaccuracy #3.
Subexponential time: n?&" or 200/

There are NP-complete problems that can be solved in
subexponential time.

NP-hardness # Exponential
Time
This is true even if P # NP.

Roughgarden: Acceptable Inaccuracy #3.

Subexponential time: n?&" or 200/

There are NP-complete problems that can be solved in
subexponential time.

Exponential Time Hypothesis (ETH): SAT requires exponential
time to be solved.

NP-hardness # Exponential
Time
This is true even if P # NP.

Roughgarden: Acceptable Inaccuracy #3.

Subexponential time: n?&" or 200/

There are NP-complete problems that can be solved in
subexponential time.

Exponential Time Hypothesis (ETH): SAT requires exponential
time to be solved.

e ETH = P # NP

NP-hardness vs NP-
completeness

NP-hardness vs NP-
completeness

* Every NP-complete problem is NP-hard.

NP-hardness vs NP-
completeness

* Every NP-complete problem is NP-hard.

e |s every NP-hard problem NP-complete?

NP-hardness vs NP-
completeness

* Every NP-complete problem is NP-hard.
e |s every NP-hard problem NP-complete?

* Are there problems that are NP-hard but not in NP?

Totally Quantified Boolean
Formula (TQBF)

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and Kk literals, and a set of
quantifiers.

Qx105%5...0, x,P(x{, X5, ..., X,)

where Q. € {V, d}

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and Kk literals, and a set of

quantifiers.

Qx105%5...0, x,P(x{, X5, ..., X,)

where Q. € {V, d}

* For example, we may have

dx,Vx,Ax;, ..., VX, (X, X5, X3, ..., X,)

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and Kk literals, and a set of
quantifiers.

Qx105%5...0, x,P(x{, X5, ..., X,)
where Q. € {V, d}

* For example, we may have
dx,Vx,Ax;, ..., VX, (X, X5, X3, ..., X,)

.., n

o We read “Does there exists X; such that for every x, there exists x;
such that ... such that for every x,, the formula ¢ is satisfiable?”

Or maybe a game of chess

Or maybe a game of chess

 Does white have a winning strategy?

Or maybe a game of chess

 Does white have a winning strategy?

 Does there exist a move for white, such that for every
move of black, there exists a move for white, such that for
every move of black, ..., such that for every move of
black, white wins?

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and k literals, and a set of
quantifiers.

Qx10,%...0 x,P(x{, X5, ..., X,)
where O, € {V,d}

* For example, we may have
dx, VX, dxs, ..., VX, (X, X5, X3, ..., X,)

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and k literals, and a set of
quantifiers.

Qx10,%...0 x,P(x{, X5, ..., X,)
where O, € {V,d}

* For example, we may have
dx, VX, dxs, ..., VX, (X, X5, X3, ..., X,)

e TQBF is NP-hard. Why??

NP-completeness

p Shortest Paths in Graphs
Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness

Topological Sort

1
e
.
- A
N
L5
3
F.
.l
{
- A7
P
g
p -,

o

TQBF

NP-completeness

p Shortest Paths in Graphs
Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness

Topological Sort

-\
B
.
- A
N
L5
3
- .
.l
{
of7
A
g
P -

o

TQBF

NP-completeness

p Shortest Paths in Graphs
Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness

Topological Sort

1
e
.
- A
N
L5
3
F.
.l
{
- A7
P
g
p -,

o

Totally Quantified Boolean
Formula (TQBF)

e A CNF formula with m clauses and k literals, and a set of quantifiers.

Qx10,%...0 %X, X5, ..., X,)

where O, € {V, 3}

e For example, we may have 3x;Vx,3xs, ..., Vx, (X, X, X3, ..., X,)

o We read "Does there exists x; such that for every X, there exists x; such
that ... such that for every x,, the formula ¢ is satisfiable?”

Totally Quantified Boolean
Formula (TQBF)

A CNF formula with m clauses and k literals, and a set of quantifiers.

Qx10,%...0 %X, X5, ..., X,)

where O, € {V, 3}

For example, we may have Jx;Vx,3x;, ..., Vx @d(x), x5, X3, ..., X,)

We read “Does there exists x; such that for every X, there exists x; such
that ... such that for every x,, the formula ¢ is satisfiable?”

For a given x; we have to check the values of x, for all possible values of
the remaining Xx,, X¢, etc. Does not seem to be doable in polynomial time.

An interesting but important
note

An interesting but important
note

* \We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

An interesting but important
note

* \We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

* In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

An interesting but important
note

* \We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

* In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

e But we have reasons to believe that SAT is not in P.

An interesting but important
note

* \We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

* In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

e But we have reasons to believe that SAT is not in P.

* Because then we would be able to solve all NP-complete
problems.

An interesting but important
note

* \We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

* In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

e But we have reasons to believe that SAT is not in P.

* Because then we would be able to solve all NP-complete
problems.

e Similarly we have reasons to believe that TQBF is not in NP.

p Shortest Paths in Graphs
Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness

Topological Sort

Qi
-
=
).
.
2*
- N
.
&
- .
.l
{
of7
.z
P -

o

PSPACE

p Shortest Paths in Graphs
Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness

Topological Sort

gy
-
- |
D,
.
k. 3
N
G
3
F.
.l
{
- A7
A
g
F -,

o

PSPACE

” Shortest Paths in Graphs T, : Y
Interval Scheduling Minimum-cost Paths in Graphs Ty, \ AN
Weighted Interval Scheduling Testing Bipartiteness N
Topological Sort - A N

PSPACE

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs

Weighted Interval Scheduling Testing Bipartiteness
Topological Sort

)
B

3

X
l’ 3
»
- A
N
L5 ‘O
3 k
e N
.
.
| <
. P
> 4
G r/
» -

A oy <23
2 o <
S 2

s s st~ TQBF is PSPACE-complete

Another NP-hard problem
that is not In NP

Another NP-hard problem
that is not In NP

e |Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

Another NP-hard problem
that is not In NP

e |Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

 This is the Halting Problem, which is NP-hard but it is
undecidable.

Another NP-hard problem
that is not In NP

e |Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

 This is the Halting Problem, which is NP-hard but it is
undecidable.

* |.e., It cannot be solved in any amount of time on any
computer.

Another NP-hard problem
that is not In NP

e |Informally: Given the description of an arbitrary computer

program and an input to the program, determine if the
program will terminate or not.

 This is the Halting Problem, which is NP-hard but it is
undecidable.

* |.e., It cannot be solved in any amount of time on any
computer.

e More about that later!

Are all NP-complete
problems equally hard?

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching

Hamiltonian Cycle

Hamiltonian Path 3-Colouring

Traveling Salesman 2 "~

Are all NP-complete
problems equally hard?

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
\ Set Cover
Subset Sum ; SAT Set Packing
1 Knapsack } 3D-Matching
% Hamiltonian Cycle :

Hamiltonian Path 3-Colouring |
Traveling Salesman _a

We solved those in
pseudopolynomial time.

Are all NP-complete
problems equally hard?

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
\ Set Cover
Subset Sum ; SAT Set Packing
1 Knapsack } 3D-Matching
% Hamiltonian Cycle :

Hamiltonian Path 3-Colouring |
Traveling Salesman _a

We solved those in
pseudopolynomial time.

Could they be “easier” than SAT in some sense?

Strong vs Weak NP-
hardness

Strong vs Weak NP-
hardness

A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

Strong vs Weak NP-
hardness

A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

 Otherwise, it is weakly NP-hard.

Strong vs Weak NP-
hardness

A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

 Otherwise, it is weakly NP-hard.

* Weakly NP-hard problems admit pseudopolynomial
algorithms.

Are all NP-complete
problems equally hard?

Interval Scheduling

Weighted Interval Scheduling

Subset Sum
Knapsack

Shortest Paths in Graphs

3SAT

SAT

Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

Minimum-cost Paths in Graphs

Testing Bipartiteness

Topological Sort

3-Colouring

Vertex Cover
Independent Set

Set Cover

Set Packing
3D-Matching

Are all NP-complete
problems equally hard?

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching
Hamiltonian Cycle :
Hamiltonian Path 3-Colouring |
Traveling Salesman _a

Another way to compare: Approximate Solutions

Are all NP-complete
problems equally hard?

Shortest Paths in Graphs

Interval Scheduling Minimum-cost Paths in Graphs
Weighted Interval Scheduling Testing Bipartiteness Vertex Cover
Topological Sort Independent Set
3SAT
Set Cover
Subset Sum SAT Set Packing
Knapsack 3D-Matching
Hamiltonian Cycle :
Hamiltonian Path 3-Colouring |
Traveling Salesman _a

Another way to compare: Approximate Solutions
More about that over the next two lectures!

