
Introduction to Algorithms and
Data Structures

NP-completeness: A closer look

The class NP
• Stands for “non deterministic polynomial time”.

• Problems that can be solved in polynomial time by a non-
deterministic Turing machine.

• More intuitive definition:

• Problems such that, if a solution is given, it can be
checked that it is indeed a solution in polynomial time.

• Efficiently verifiable.

The class NP

The class NP

Interval Scheduling

The class NP

Interval Scheduling
Weighted Interval Scheduling

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3 SAT
• A CNF formula with m clauses and k literals. 

 
φ = (x1 ⌵ x5 ⌵ x3) ⌃ (x2 ⌵ x6 ⌵ ⌝x5) ⌃ … ⌃ (x3 ⌵ x8 ⌵ x12)

• (“An AND of ORs”).

• Each clause has three literals.

• Truth assignment: A value in {0,1} for each variable xi.

• Satisfying assignment: A truth assignment which makes the formula
evaluate to 1 (= true).

• Computational problem 3SAT : Decide if the input formula φ has a
satisfying assignment.

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
decision version

• Definition: A vertex cover C of a graph G=(V, E) is a subset
of the nodes such that every edge e in the graph has at
least one endpoint in C.

• Definition: A minimum vertex cover is a vertex cover of
the smallest possible size.

• Vertex Cover 
Input: A graph G=(V, E) and a number k  
Output: Is there a vertex cover of size ≤ k?.

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover

Other problems in NP

Other problems in NP
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

Other problems in NP
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum
size.

Other problems in NP
• Independent Set in graph G: A set of nodes in the graph,

such that there is no edge between any two nodes in the
set.

• Maximum Independent Set  
Given a graph G, find an independent set of maximum
size.

• Maximum Independent Set (decision version) 
Given a graph G, and an integer k, is there an
independent set of size at least k?

Other problems in NP

Other problems in NP
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

Other problems in NP
• Set Packing 

Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at least k of these sets such that no two of
them intersect?

• Set Cover 
Given a set U of elements, a collection S1, … , Sm of
subsets of U and a number k, does there exist a
collection of at most k of these sets whose union is equal
to U?

Other problems in NP

Other problems in NP

• 3-Dimensional Matching 
Given disjoint sets X, Y and Z each of size n, and given a
set T (which is a subset of X x Y x Z) of ordered triples,
does there exist a set of n triples in T, so that each
element of X U Y U Z is contained in exactly in one of
these triples?

Other problems in NP

Other problems in NP

• k-Colouring of a graph G: A function f: V → {1, …, k} so
that for every edge (u, v) we have that f(u) ≠ f(v).

Other problems in NP

• k-Colouring of a graph G: A function f: V → {1, …, k} so
that for every edge (u, v) we have that f(u) ≠ f(v).

• 3-Colouring 
Given a graph G, does it have a 3-Colouring?

Other problems in NP

Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

Other problems in NP
• Hamiltonian cycle in a directed graph G: A cycle in a directed

graph that visits each vertex exactly once.

• Hamiltonian path in a directed graph G: A path in a directed graph
that contains each vertex exactly once.

• Hamiltonian Cycle 
Given a directed graph G, does it have a Hamiltonian Cycle?

• Hamiltonian Path 
Given a directed graph G, does it have a Hamiltonian Path?

• Traveling Salesman 
(def Kleinberg and Tardos, p. 474).

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

The class NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

NP-completeness

• A problem B is NP-complete if

• It is in NP.

• i.e., it has a polynomial-time verifiable solution.

• It is NP-hard.

• i.e., every problem in NP can be efficiently reduced
to it.

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

3SAT

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)
The proof uses a generic argument that if a problem has a solution which can 

be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

The Cook-Levin Theorem (1971, 1973)
The proof uses a generic argument that if a problem has a solution which can 

be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

NP-completeness

NP-completeness

• What does the NP-completeness of SAT mean?

NP-completeness

• What does the NP-completeness of SAT mean?

• It means that it is at least as hard to solve as any other
problem in NP.

NP-completeness

• What does the NP-completeness of SAT mean?

• It means that it is at least as hard to solve as any other
problem in NP.

• In particular, if we had a polynomial-time algorithm for
solving SAT, we could solve any other problem in NP,
via the reduction (the arrow).

Wooclap!

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

• What does the NP-completeness of SAT mean?

• It means that it is at least as hard to solve as any other
problem in NP.

• In particular, if we had a polynomial-time algorithm for
solving SAT, we could solve any other problem in NP,
via the reduction (the arrow).

• At this stage, that doesn’t necessarily say much.

NP-completeness

NP-completeness
• Some time passes, and we tried and tried to find a

polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one…

NP-completeness
• Some time passes, and we tried and tried to find a

polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one…

• This seems to suggest that SAT might be in some sense
harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

NP-completeness
• Some time passes, and we tried and tried to find a

polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one…

• This seems to suggest that SAT might be in some sense
harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

• We know of course that it is at least as hard to solve, by
virtue of being NP-complete.

NP-completeness
• Some time passes, and we tried and tried to find a

polynomial-time algorithm for SAT (or 3SAT) and we are still
looking for one…

• This seems to suggest that SAT might be in some sense
harder to solve than e.g., Interval Scheduling or Testing
Bipartiteness.

• We know of course that it is at least as hard to solve, by
virtue of being NP-complete.

• But this seems to suggest that some problems in NP are
harder than others.

NP-completeness

NP-completeness

• After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

NP-completeness

• After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

• We tried hard and we failed… We are still looking for a
polynomial-time algorithm.

NP-completeness

• After a while, we gave up on SAT and decided to try to
solve our new favourite problem, Vertex Cover, in
polynomial time.

• We tried hard and we failed… We are still looking for a
polynomial-time algorithm.

• Hmm, maybe Vertex Cover is also harder to solve than,
say, Interval Scheduling or Testing Bipartiteness…

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

NP-completeness

• Vertex Cover is NP-complete.

NP-completeness

• Vertex Cover is NP-complete.

• This means that it is at least as hard as any problem in
NP, including SAT.

NP-completeness

• Vertex Cover is NP-complete.

• This means that it is at least as hard as any problem in
NP, including SAT.

• But we really tried to solve SAT in polynomial-time… No
wonder we failed to solve Vertex Cover too!

NP-completeness

NP-completeness

• Ok, let’s try to solve Independent Set in polynomial time
then.

NP-completeness

• Ok, let’s try to solve Independent Set in polynomial time
then.

• Arghh, we can’t solve that either!

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

NP-completeness

• Independent Set is NP-complete.

NP-completeness

• Independent Set is NP-complete.

• This means that it is at least as hard as any problem in
NP, including SAT and Vertex Cover.

NP-completeness

• Independent Set is NP-complete.

• This means that it is at least as hard as any problem in
NP, including SAT and Vertex Cover.

• But we really tried to solve SAT and Vertex Cover in
polynomial-time… No wonder we failed to solve
Independent Set too.

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

NP-completeness

NP-completeness
• 3SAT, Vertex Cover, Independent Set, Subset Sum,

Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling
Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

NP-completeness
• 3SAT, Vertex Cover, Independent Set, Subset Sum,

Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling
Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

• Actually, this is only a very small subset of NP-complete
problems.

NP-completeness
• 3SAT, Vertex Cover, Independent Set, Subset Sum,

Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling
Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

• Actually, this is only a very small subset of NP-complete
problems.

• Hundreds of other meaningful problems are NP-complete.

NP-completeness
• 3SAT, Vertex Cover, Independent Set, Subset Sum,

Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling
Salesman, 3-Colouring, Set Cover, Set Packing, 3D-
Matching are all NP-complete.

• Actually, this is only a very small subset of NP-complete
problems.

• Hundreds of other meaningful problems are NP-complete.

• We don’t know how to solve any one of those in polynomial-
time.

The effect of NP-hardness

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do
so.

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do
so.

• Then you discover that it can be reduced to one of all of these NP-complete
problems.

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do
so.

• Then you discover that it can be reduced to one of all of these NP-complete
problems.

• This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do
so.

• Then you discover that it can be reduced to one of all of these NP-complete
problems.

• This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

• That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

The effect of NP-hardness
• Imagine that you have a new favourite problem P.

• You try to design a polynomial-time algorithm for it but you find it hard to do
so.

• Then you discover that it can be reduced to one of all of these NP-complete
problems.

• This means that if you succeeded in your quest, you would solve all of these
problems in polynomial-time.

• That would mean that you are smarter than generations of researchers and
pretty much anyone else that has studied computer science ever.

• I don’t know about you, but I would probably be convinced that I am not
going to come up with a polynomial-time algorithm!

Wooclap!

Reduction strategies

Reduction strategies

• For now, we’ll tell you what to reduce from.

Reduction strategies

• For now, we’ll tell you what to reduce from.

• And the reduction will be relatively simple.

Reduction strategies

• For now, we’ll tell you what to reduce from.

• And the reduction will be relatively simple.

• In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

Reduction strategies

• For now, we’ll tell you what to reduce from.

• And the reduction will be relatively simple.

• In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

• Try to think of reductions you have seen in the past.

Reduction strategies

• For now, we’ll tell you what to reduce from.

• And the reduction will be relatively simple.

• In general, the idea is to find a problem that looks similar
to the one we are trying to prove NP-hardness for.

• Try to think of reductions you have seen in the past.

• This takes time!

NP-completeness,
a taxonomy

Independent Set
Set Packing

Vertex Cover
Set Cover

3D-Matching
Graph Colouring

Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

Subset Sum
Knapsack 3 SAT

Packing problems Covering problems Partitioning problems

Sequencing problems Numerical problems Constraint Satisfaction  
problems

NP-completeness

NP-completeness
• So when a problem is NP-complete, this means:

NP-completeness
• So when a problem is NP-complete, this means:

• That it is in NP, and it is at least as hard to solve as any
other problem in NP.

NP-completeness
• So when a problem is NP-complete, this means:

• That it is in NP, and it is at least as hard to solve as any
other problem in NP.

• That it is unlikely that we solve it in polynomial time, as
that would imply that we solve all the NP-complete
problems.

NP-completeness
• So when a problem is NP-complete, this means:

• That it is in NP, and it is at least as hard to solve as any
other problem in NP.

• That it is unlikely that we solve it in polynomial time, as
that would imply that we solve all the NP-complete
problems.

• That it is not solvable in polynomial time assuming
.P ≠ NP

Wooclap!

NP-hardness is a worst-
case impossibility

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

NP-hardness is a worst-
case impossibility

• Let’s recall the NP-hardness proof for Vertex Cover.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

NP-hardness is a worst-
case impossibility

• Let’s recall the NP-hardness proof for Vertex Cover.

x1 ⌝x1 x2 ⌝x2

x1 x1

x2

⌝x1 ⌝x2

⌝x2

⌝x1 x2

x2

⌝x1 x2

x1 x1 ⌝x2

⌝x2

⌝x1

x2

• If I could decide Vertex Cover on this graph, I could
decide 3SAT.

NP-hardness is a worst-
case impossibility

NP-hardness is a worst-
case impossibility

• What about this graph? Can I decide Vertex Cover on this
graph?

NP-hardness is a worst-
case impossibility

• What about this graph? Can I decide Vertex Cover on this
graph?

• “Choose one leave one” finds a minimum vertex cover.

NP-hardness is a worst-
case impossibility

NP-hardness is a worst-
case impossibility

• An NP-hardness result does not mean that (unless P=NP)
we cannot solve the problem in polynomial time for any
instance.

NP-hardness is a worst-
case impossibility

• An NP-hardness result does not mean that (unless P=NP)
we cannot solve the problem in polynomial time for any
instance.

• It means that we cannot solve it in polynomial time for
every instance.

NP-hardness is a worst-
case impossibility

• An NP-hardness result does not mean that (unless P=NP)
we cannot solve the problem in polynomial time for any
instance.

• It means that we cannot solve it in polynomial time for
every instance.

• For all we know, every other instance besides those used
in the reduction could be easy to solve.

NP-hardness is a worst-
case impossibility

• For all we know, every other instance besides those used
in the reduction could be easy to solve.

NP-hardness is a worst-
case impossibility

• For all we know, every other instance besides those used
in the reduction could be easy to solve.

• Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

NP-hardness is a worst-
case impossibility

• For all we know, every other instance besides those used
in the reduction could be easy to solve.

• Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

• Still, sometimes we can provably design polynomial
algorithms on certain input structures.

NP-hardness is a worst-
case impossibility

• For all we know, every other instance besides those used
in the reduction could be easy to solve.

• Usually not the case! In practice usually we don’t have
good ways of solving NP-hard problems.

• Still, sometimes we can provably design polynomial
algorithms on certain input structures.

• For example, a minimum Vertex Cover on trees can be
found in polynomial time using Dynamic Programming.

Wooclap!

NP-hardness Exponential
Time

≠

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

• Subexponential time: or . nO(lg n) 2O(n)

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

• Subexponential time: or . nO(lg n) 2O(n)

• There are NP-complete problems that can be solved in
subexponential time.

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

• Subexponential time: or . nO(lg n) 2O(n)

• There are NP-complete problems that can be solved in
subexponential time.

• Exponential Time Hypothesis (ETH): SAT requires exponential
time to be solved.

NP-hardness Exponential
Time

≠

• This is true even if .P ≠ NP

• Roughgarden: Acceptable Inaccuracy #3.

• Subexponential time: or . nO(lg n) 2O(n)

• There are NP-complete problems that can be solved in
subexponential time.

• Exponential Time Hypothesis (ETH): SAT requires exponential
time to be solved.

• ETH ⇒ P ≠ NP

NP-hardness vs NP-
completeness

NP-hardness vs NP-
completeness

• Every NP-complete problem is NP-hard.

NP-hardness vs NP-
completeness

• Every NP-complete problem is NP-hard.

• Is every NP-hard problem NP-complete?

NP-hardness vs NP-
completeness

• Every NP-complete problem is NP-hard.

• Is every NP-hard problem NP-complete?

• Are there problems that are NP-hard but not in NP?

Totally Quantified Boolean
Formula (TQBF)

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of
quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of
quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of
quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• We read “Does there exists such that for every there exists
such that … such that for every , the formula is satisfiable?”

x1 x2 x3
xn ϕ

Or maybe a game of chess

Or maybe a game of chess

• Does white have a winning strategy?

Or maybe a game of chess

• Does white have a winning strategy?

• Does there exist a move for white, such that for every
move of black, there exists a move for white, such that for
every move of black, … , such that for every move of
black, white wins?

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of
quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of
quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have
∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• TQBF is NP-hard. Why?

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

NP-completeness

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have ∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• We read “Does there exists such that for every there exists such
that … such that for every , the formula is satisfiable?”

x1 x2 x3
xn ϕ

Totally Quantified Boolean
Formula (TQBF)

• A CNF formula with m clauses and k literals, and a set of quantifiers. 
 

 
 
where

Q1x1Q2x2…Qnxnϕ(x1, x2, …, xn)

Qi ∈ {∀, ∃}

• For example, we may have ∃x1 ∀x2 ∃x3, …, ∀xnϕ(x1, x2, x3, …, xn)

• We read “Does there exists such that for every there exists such
that … such that for every , the formula is satisfiable?”

x1 x2 x3
xn ϕ

• For a given we have to check the values of for all possible values of
the remaining etc. Does not seem to be doable in polynomial time.

x1 x2
x4, x6,

An interesting but important
note

An interesting but important
note

• We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

An interesting but important
note

• We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

• In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

An interesting but important
note

• We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

• In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

• But we have reasons to believe that SAT is not in P.

An interesting but important
note

• We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

• In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

• But we have reasons to believe that SAT is not in P.

• Because then we would be able to solve all NP-complete
problems.

An interesting but important
note

• We cannot categorically say that TQBF is not efficiently
verifiable (i.e., that it is not in NP).

• In the same way as we cannot categorically say that SAT is
not efficiently solvable (i.e., that it is not in P).

• But we have reasons to believe that SAT is not in P.

• Because then we would be able to solve all NP-complete
problems.

• Similarly we have reasons to believe that TQBF is not in NP.

NP

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

PSPACE

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

PSPACE

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

PSPACE

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

TQBF

TQBF is PSPACE-complete

Another NP-hard problem
that is not in NP

Another NP-hard problem
that is not in NP

• Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

Another NP-hard problem
that is not in NP

• Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

• This is the Halting Problem, which is NP-hard but it is
undecidable.

Another NP-hard problem
that is not in NP

• Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

• This is the Halting Problem, which is NP-hard but it is
undecidable.

• i.e., it cannot be solved in any amount of time on any
computer.

Another NP-hard problem
that is not in NP

• Informally: Given the description of an arbitrary computer
program and an input to the program, determine if the
program will terminate or not.

• This is the Halting Problem, which is NP-hard but it is
undecidable.

• i.e., it cannot be solved in any amount of time on any
computer.

• More about that later!

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

We solved those in  
pseudopolynomial time.

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

We solved those in  
pseudopolynomial time.

Could they be “easier” than SAT in some sense?

Strong vs Weak NP-
hardness

Strong vs Weak NP-
hardness

• A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

Strong vs Weak NP-
hardness

• A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

• Otherwise, it is weakly NP-hard.

Strong vs Weak NP-
hardness

• A problem P is strongly NP-hard if it remains NP-hard
even when the numerical parameters in the input are
given in unary representation.

• Otherwise, it is weakly NP-hard.

• Weakly NP-hard problems admit pseudopolynomial
algorithms.

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

Another way to compare: Approximate Solutions

Are all NP-complete
problems equally hard?

Interval Scheduling
Weighted Interval Scheduling

Shortest Paths in Graphs

Minimum-cost Paths in Graphs
Testing Bipartiteness

Topological Sort

Subset Sum
Knapsack

Vertex Cover
Independent Set

Set Packing
Set Cover

3D-Matching

3-Colouring
Hamiltonian Cycle
Hamiltonian Path

Traveling Salesman

SAT

3SAT

Another way to compare: Approximate Solutions
More about that over the next two lectures!

