Introduction to Algorithms and Data Structures

NP-completeness: A closer look

The class NP

- Stands for "non deterministic polynomial time".
- Problems that can be solved in polynomial time by a nondeterministic Turing machine.
- More intuitive definition:
- Problems such that, if a solution is given, it can be checked that it is indeed a solution in polynomial time.
- Efficiently verifiable.

The class NP

3 SAT

- A CNF formula with m clauses and k literals.

$$
\phi=\left(x_{1} \vee x_{5} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{6} \vee{ }^{\wedge} x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee x_{8} \vee x_{12}\right)
$$

- ("An AND of ORs").
- Each clause has three literals.
- Truth assignment: A value in $\{0,1\}$ for each variable x_{i}.
- Satisfying assignment: A truth assignment which makes the formula evaluate to 1 (= true).
- Computational problem 3SAT : Decide if the input formula ϕ has a satisfying assignment.

The class NP

The class NP

Vertex Cover decision version

- Definition: A vertex cover C of a graph $G=(V, E)$ is a subset of the nodes such that every edge e in the graph has at least one endpoint in C.
- Definition: A minimum vertex cover is a vertex cover of the smallest possible size.
- Vertex Cover

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a number k
Output: Is there a vertex cover of size $\leq k$?.

The class NP

The class NP

Other problems in NP

Other problems in NP

- Independent Set in graph G: A set of nodes in the graph, such that there is no edge between any two nodes in the set.

Other problems in NP

- Independent Set in graph G: A set of nodes in the graph, such that there is no edge between any two nodes in the set.
- Maximum Independent Set Given a graph G, find an independent set of maximum size.

Other problems in NP

- Independent Set in graph G: A set of nodes in the graph, such that there is no edge between any two nodes in the set.
- Maximum Independent Set Given a graph G, find an independent set of maximum size.
- Maximum Independent Set (decision version) Given a graph G, and an integer k, is there an independent set of size at least k ?

Other problems in NP

Other problems in NP

- Set Packing

Given a set U of elements, a collection S_{1}, \ldots, S_{m} of subsets of U and a number k, does there exist a collection of at least k of these sets such that no two of them intersect?

Other problems in NP

- Set Packing

Given a set U of elements, a collection S_{1}, \ldots, S_{m} of subsets of U and a number k, does there exist a collection of at least k of these sets such that no two of them intersect?

- Set Cover

Given a set U of elements, a collection S_{1}, \ldots, S_{m} of subsets of U and a number k, does there exist a collection of at most k of these sets whose union is equal to U ?

Other problems in NP

Other problems in NP

- 3-Dimensional Matching

Given disjoint sets X, Y and Z each of size n, and given a set T (which is a subset of $X \times Y \times Z$) of ordered triples, does there exist a set of n triples in T, so that each element of $X \cup Y \cup Z$ is contained in exactly in one of these triples?

Other problems in NP

Other problems in NP

- k-Colouring of a graph G: A function $\mathrm{f}: \mathrm{V} \rightarrow\{1, \ldots, k\}$ so that for every edge (u, v) we have that $f(u) \neq f(v)$.

Other problems in NP

- k-Colouring of a graph G: A function $\mathrm{f}: \mathrm{V} \rightarrow\{1, \ldots, k\}$ so that for every edge (u, v) we have that $f(u) \neq f(v)$.
- 3-Colouring

Given a graph G, does it have a 3-Colouring?

Other problems in NP

Other problems in NP

- Hamiltonian cycle in a directed graph G: A cycle in a directed graph that visits each vertex exactly once.

Other problems in NP

- Hamiltonian cycle in a directed graph G: A cycle in a directed graph that visits each vertex exactly once.
- Hamiltonian path in a directed graph G: A path in a directed graph that contains each vertex exactly once.

Other problems in NP

- Hamiltonian cycle in a directed graph G: A cycle in a directed graph that visits each vertex exactly once.
- Hamiltonian path in a directed graph G: A path in a directed graph that contains each vertex exactly once.
- Hamiltonian Cycle

Given a directed graph G, does it have a Hamiltonian Cycle?

Other problems in NP

- Hamiltonian cycle in a directed graph G: A cycle in a directed graph that visits each vertex exactly once.
- Hamiltonian path in a directed graph G: A path in a directed graph that contains each vertex exactly once.
- Hamiltonian Cycle

Given a directed graph G, does it have a Hamiltonian Cycle?

- Hamiltonian Path

Given a directed graph G, does it have a Hamiltonian Path?

Other problems in NP

- Hamiltonian cycle in a directed graph G: A cycle in a directed graph that visits each vertex exactly once.
- Hamiltonian path in a directed graph G: A path in a directed graph that contains each vertex exactly once.
- Hamiltonian Cycle

Given a directed graph G, does it have a Hamiltonian Cycle?

- Hamiltonian Path

Given a directed graph G, does it have a Hamiltonian Path?

- Traveling Salesman (def Kleinberg and Tardos, p. 474).

The class NP

NP-completeness

- A problem B is NP-complete if
- It is in NP.
- i.e., it has a polynomial-time verifiable solution.
- It is NP-hard.
- i.e., every problem in NP can be efficiently reduced to it.

NP-completeness

The Cook-Levin Theorem $(1971,1973)$

NP-completeness

The Cook-Levin Theorem $(1971,1973)$
The proof uses a generic argument that if a problem has a solution which can be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

Undergraduate Course: Introduction to Theoretical Computer Science (INFR10059)

The Cook-Levin Theorem $(1971,1973)$
The proof uses a generic argument that if a problem has a solution which can be verified in polynomial-time, then it reduces in polynomial time to the SAT problem.

NP-completeness

NP-completeness

- What does the NP-completeness of SAT mean?

NP-completeness

- What does the NP-completeness of SAT mean?
- It means that it is at least as hard to solve as any other problem in NP.

NP-completeness

- What does the NP-completeness of SAT mean?
- It means that it is at least as hard to solve as any other problem in NP.
- In particular, if we had a polynomial-time algorithm for solving SAT, we could solve any other problem in NP, via the reduction (the arrow).

Wooclap!

NP-completeness

NP-completeness

- What does the NP-completeness of SAT mean?
- It means that it is at least as hard to solve as any other problem in NP.
- In particular, if we had a polynomial-time algorithm for solving SAT, we could solve any other problem in NP, via the reduction (the arrow).
- At this stage, that doesn't necessarily say much.

NP-completeness

NP-completeness

- Some time passes, and we tried and tried to find a polynomial-time algorithm for SAT (or 3SAT) and we are still looking for one...

NP-completeness

- Some time passes, and we tried and tried to find a polynomial-time algorithm for SAT (or 3SAT) and we are still looking for one...
- This seems to suggest that SAT might be in some sense harder to solve than e.g., Interval Scheduling or Testing Bipartiteness.

NP-completeness

- Some time passes, and we tried and tried to find a polynomial-time algorithm for SAT (or 3SAT) and we are still looking for one...
- This seems to suggest that SAT might be in some sense harder to solve than e.g., Interval Scheduling or Testing Bipartiteness.
- We know of course that it is at least as hard to solve, by virtue of being NP-complete.

NP-completeness

- Some time passes, and we tried and tried to find a polynomial-time algorithm for SAT (or 3SAT) and we are still looking for one...
- This seems to suggest that SAT might be in some sense harder to solve than e.g., Interval Scheduling or Testing Bipartiteness.
- We know of course that it is at least as hard to solve, by virtue of being NP-complete.
- But this seems to suggest that some problems in NP are harder than others.

NP-completeness

NP-completeness

- After a while, we gave up on SAT and decided to try to solve our new favourite problem, Vertex Cover, in polynomial time.

NP-completeness

- After a while, we gave up on SAT and decided to try to solve our new favourite problem, Vertex Cover, in polynomial time.
- We tried hard and we failed... We are still looking for a polynomial-time algorithm.

NP-completeness

- After a while, we gave up on SAT and decided to try to solve our new favourite problem, Vertex Cover, in polynomial time.
- We tried hard and we failed... We are still looking for a polynomial-time algorithm.
- Hmm, maybe Vertex Cover is also harder to solve than, say, Interval Scheduling or Testing Bipartiteness...

NP-completeness

NP-completeness

NP-completeness

NP-completeness

NP-completeness

NP-completeness

NP-completeness

- Vertex Cover is NP-complete.

NP-completeness

- Vertex Cover is NP-complete.
- This means that it is at least as hard as any problem in NP, including SAT.

NP-completeness

- Vertex Cover is NP-complete.
- This means that it is at least as hard as any problem in NP, including SAT.
- But we really tried to solve SAT in polynomial-time... No wonder we failed to solve Vertex Cover too!

NP-completeness

NP-completeness

- Ok, let's try to solve Independent Set in polynomial time then.

NP-completeness

- Ok, let's try to solve Independent Set in polynomial time then.
- Arghh, we can't solve that either!

NP-completeness

NP-completeness

NP-completeness

NP-completeness

NP-completeness

NP-completeness

- Independent Set is NP-complete.

NP-completeness

- Independent Set is NP-complete.
- This means that it is at least as hard as any problem in NP, including SAT and Vertex Cover.

NP-completeness

- Independent Set is NP-complete.
- This means that it is at least as hard as any problem in NP, including SAT and Vertex Cover.
- But we really tried to solve SAT and Vertex Cover in polynomial-time... No wonder we failed to solve Independent Set too.

NP-completeness

NP-completeness

NP-completeness

- 3SAT, Vertex Cover, Independent Set, Subset Sum, Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling Salesman, 3-Colouring, Set Cover, Set Packing, 3DMatching are all NP-complete.

NP-completeness

- 3SAT, Vertex Cover, Independent Set, Subset Sum, Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling Salesman, 3-Colouring, Set Cover, Set Packing, 3DMatching are all NP-complete.
- Actually, this is only a very small subset of NP-complete problems.

NP-completeness

- 3SAT, Vertex Cover, Independent Set, Subset Sum, Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling Salesman, 3-Colouring, Set Cover, Set Packing, 3DMatching are all NP-complete.
- Actually, this is only a very small subset of NP-complete problems.
- Hundreds of other meaningful problems are NP-complete.

NP-completeness

- 3SAT, Vertex Cover, Independent Set, Subset Sum, Knapsack, Hamiltonian Path, Hamiltonian Cycle, Traveling Salesman, 3-Colouring, Set Cover, Set Packing, 3DMatching are all NP-complete.
- Actually, this is only a very small subset of NP-complete problems.
- Hundreds of other meaningful problems are NP-complete.
- We don't know how to solve any one of those in polynomialtime.

The effect of NP-hardness

The effect of NP-hardness

- Imagine that you have a new favourite problem P.

The effect of NP-hardness

- Imagine that you have a new favourite problem P.
- You try to design a polynomial-time algorithm for it but you find it hard to do so.

The effect of NP-hardness

- Imagine that you have a new favourite problem P.
- You try to design a polynomial-time algorithm for it but you find it hard to do so.
- Then you discover that it can be reduced to one of all of these NP-complete problems.

The effect of NP-hardness

- Imagine that you have a new favourite problem P.
- You try to design a polynomial-time algorithm for it but you find it hard to do so.
- Then you discover that it can be reduced to one of all of these NP-complete problems.
- This means that if you succeeded in your quest, you would solve all of these problems in polynomial-time.

The effect of NP-hardness

- Imagine that you have a new favourite problem P.
- You try to design a polynomial-time algorithm for it but you find it hard to do so.
- Then you discover that it can be reduced to one of all of these NP-complete problems.
- This means that if you succeeded in your quest, you would solve all of these problems in polynomial-time.
- That would mean that you are smarter than generations of researchers and pretty much anyone else that has studied computer science ever.

The effect of NP-hardness

- Imagine that you have a new favourite problem P.
- You try to design a polynomial-time algorithm for it but you find it hard to do so.
- Then you discover that it can be reduced to one of all of these NP-complete problems.
- This means that if you succeeded in your quest, you would solve all of these problems in polynomial-time.
- That would mean that you are smarter than generations of researchers and pretty much anyone else that has studied computer science ever.
- I don't know about you, but I would probably be convinced that I am not going to come up with a polynomial-time algorithm!

Wooclap!

Reduction strategies

Reduction strategies

- For now, we'll tell you what to reduce from.

Reduction strategies

- For now, we'll tell you what to reduce from.
- And the reduction will be relatively simple.

Reduction strategies

- For now, we'll tell you what to reduce from.
- And the reduction will be relatively simple.
- In general, the idea is to find a problem that looks similar to the one we are trying to prove NP-hardness for.

Reduction strategies

- For now, we'll tell you what to reduce from.
- And the reduction will be relatively simple.
- In general, the idea is to find a problem that looks similar to the one we are trying to prove NP-hardness for.
- Try to think of reductions you have seen in the past.

Reduction strategies

- For now, we'll tell you what to reduce from.
- And the reduction will be relatively simple.
- In general, the idea is to find a problem that looks similar to the one we are trying to prove NP-hardness for.
- Try to think of reductions you have seen in the past.
- This takes time!

NP-completeness,

a taxonomy

Packing problems

Sequencing problems

Covering problems

Numerical problems

Partitioning problems

Constraint Satisfaction problems

NP-completeness

NP-completeness

- So when a problem is NP-complete, this means:

NP-completeness

- So when a problem is NP-complete, this means:
- That it is in NP, and it is at least as hard to solve as any other problem in NP.

NP-completeness

- So when a problem is NP-complete, this means:
- That it is in NP, and it is at least as hard to solve as any other problem in NP.
- That it is unlikely that we solve it in polynomial time, as that would imply that we solve all the NP-complete problems.

NP-completeness

- So when a problem is NP-complete, this means:
- That it is in NP, and it is at least as hard to solve as any other problem in NP.
- That it is unlikely that we solve it in polynomial time, as that would imply that we solve all the NP-complete problems.
- That it is not solvable in polynomial time assuming $P \neq N P$.

Wooclap!

NP-hardness is a worstcase impossibility

NP-hardness is a worstcase impossibility

- Let's recall the NP-hardness proof for Vertex Cover.

NP-hardness is a worstcase impossibility

- Let's recall the NP-hardness proof for Vertex Cover.

- If I could decide Vertex Cover on this graph, I could decide 3SAT.

NP-hardness is a worstcase impossibility

NP-hardness is a worstcase impossibility

- What about this graph? Can I decide Vertex Cover on this graph?

NP-hardness is a worstcase impossibility

- What about this graph? Can I decide Vertex Cover on this graph?

- "Choose one leave one" finds a minimum vertex cover.

NP-hardness is a worstcase impossibility

NP-hardness is a worstcase impossibility

- An NP-hardness result does not mean that (unless P=NP) we cannot solve the problem in polynomial time for any instance.

NP-hardness is a worstcase impossibility

- An NP-hardness result does not mean that (unless P=NP) we cannot solve the problem in polynomial time for any instance.
- It means that we cannot solve it in polynomial time for every instance.

NP-hardness is a worstcase impossibility

- An NP-hardness result does not mean that (unless P=NP) we cannot solve the problem in polynomial time for any instance.
- It means that we cannot solve it in polynomial time for every instance.
- For all we know, every other instance besides those used in the reduction could be easy to solve.

NP-hardness is a worstcase impossibility

- For all we know, every other instance besides those used in the reduction could be easy to solve.

NP-hardness is a worstcase impossibility

- For all we know, every other instance besides those used in the reduction could be easy to solve.
- Usually not the case! In practice usually we don't have good ways of solving NP-hard problems.

NP-hardness is a worstcase impossibility

- For all we know, every other instance besides those used in the reduction could be easy to solve.
- Usually not the case! In practice usually we don't have good ways of solving NP-hard problems.
- Still, sometimes we can provably design polynomial algorithms on certain input structures.

NP-hardness is a worstcase impossibility

- For all we know, every other instance besides those used in the reduction could be easy to solve.
- Usually not the case! In practice usually we don't have good ways of solving NP-hard problems.
- Still, sometimes we can provably design polynomial algorithms on certain input structures.
- For example, a minimum Vertex Cover on trees can be found in polynomial time using Dynamic Programming.

Wooclap!

NP-hardness \neq Exponential Time

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.
- Roughgarden: Acceptable Inaccuracy \#3.

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.
- Roughgarden: Acceptable Inaccuracy \#3.
- Subexponential time: $n^{O(\lg n)}$ or $2^{O(\sqrt{n})}$.

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.
- Roughgarden: Acceptable Inaccuracy \#3.
- Subexponential time: $n^{O(\lg n)}$ or $2^{O(\sqrt{n})}$.
- There are NP-complete problems that can be solved in subexponential time.

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.
- Roughgarden: Acceptable Inaccuracy \#3.
- Subexponential time: $n^{O(\lg n)}$ or $2^{O(\sqrt{n})}$.
- There are NP-complete problems that can be solved in subexponential time.
- Exponential Time Hypothesis (ETH): SAT requires exponential time to be solved.

NP-hardness \neq Exponential Time

- This is true even if $P \neq N P$.
- Roughgarden: Acceptable Inaccuracy \#3.
- Subexponential time: $n^{O(\lg n)}$ or $2^{O(\sqrt{n})}$.
- There are NP-complete problems that can be solved in subexponential time.
- Exponential Time Hypothesis (ETH): SAT requires exponential time to be solved.
- $\mathrm{ETH} \Rightarrow P \neq N P$

NP-hardness vs NPcompleteness

NP-hardness vs NPcompleteness

- Every NP-complete problem is NP-hard.

NP-hardness vs NPcompleteness

- Every NP-complete problem is NP-hard.
- Is every NP-hard problem NP-complete?

NP-hardness vs NPcompleteness

- Every NP-complete problem is NP-hard.
- Is every NP-hard problem NP-complete?
- Are there problems that are NP-hard but not in NP?

Totally Quantified Boolean Formula (TQBF)

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have

$$
\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have
$\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
- We read "Does there exists x_{1} such that for every x_{2} there exists x_{3} such that \ldots such that for every x_{n}, the formula ϕ is satisfiable?"

Or maybe a game of chess

Or maybe a game of chess

- Does white have a winning strategy?

Or maybe a game of chess

- Does white have a winning strategy?
- Does there exist a move for white, such that for every move of black, there exists a move for white, such that for every move of black, ... , such that for every move of black, white wins?

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have
$\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have
$\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
- TQBF is NP-hard. Why?

NP-completeness

NP-completeness

NP-completeness

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have $\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
- We read "Does there exists x_{1} such that for every x_{2} there exists x_{3} such that ... such that for every x_{n}, the formula ϕ is satisfiable?"

Totally Quantified Boolean Formula (TQBF)

- A CNF formula with m clauses and k literals, and a set of quantifiers.
$Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
where $Q_{i} \in\{\forall, \exists\}$
- For example, we may have $\exists x_{1} \forall x_{2} \exists x_{3}, \ldots, \forall x_{n} \phi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
- We read "Does there exists x_{1} such that for every x_{2} there exists x_{3} such that ... such that for every x_{n}, the formula ϕ is satisfiable?"
- For a given x_{1} we have to check the values of x_{2} for all possible values of the remaining x_{4}, x_{6}, etc. Does not seem to be doable in polynomial time.

An interesting but important note

An interesting but important note

- We cannot categorically say that TQBF is not efficiently verifiable (i.e., that it is not in NP).

An interesting but important note

- We cannot categorically say that TQBF is not efficiently verifiable (i.e., that it is not in NP).
- In the same way as we cannot categorically say that SAT is not efficiently solvable (i.e., that it is not in P).

An interesting but important note

- We cannot categorically say that TQBF is not efficiently verifiable (i.e., that it is not in NP).
- In the same way as we cannot categorically say that SAT is not efficiently solvable (i.e., that it is not in P).
- But we have reasons to believe that SAT is not in P.

An interesting but important note

- We cannot categorically say that TQBF is not efficiently verifiable (i.e., that it is not in NP).
- In the same way as we cannot categorically say that SAT is not efficiently solvable (i.e., that it is not in P).
- But we have reasons to believe that SAT is not in P.
- Because then we would be able to solve all NP-complete problems.

An interesting but important note

- We cannot categorically say that TQBF is not efficiently verifiable (i.e., that it is not in NP).
- In the same way as we cannot categorically say that SAT is not efficiently solvable (i.e., that it is not in P).
- But we have reasons to believe that SAT is not in P.
- Because then we would be able to solve all NP-complete problems.
- Similarly we have reasons to believe that TQBF is not in NP.

NP

PSPACE

PSPACE

PSPACE

Another NP-hard problem
that is not in NP

Another NP-hard problem that is not in NP

- Informally: Given the description of an arbitrary computer program and an input to the program, determine if the program will terminate or not.

Another NP-hard problem that is not in NP

- Informally: Given the description of an arbitrary computer program and an input to the program, determine if the program will terminate or not.
- This is the Halting Problem, which is NP-hard but it is undecidable.

Another NP-hard problem that is not in NP

- Informally: Given the description of an arbitrary computer program and an input to the program, determine if the program will terminate or not.
- This is the Halting Problem, which is NP-hard but it is undecidable.
- i.e., it cannot be solved in any amount of time on any computer.

Another NP-hard problem that is not in NP

- Informally: Given the description of an arbitrary computer program and an input to the program, determine if the program will terminate or not.
- This is the Halting Problem, which is NP-hard but it is undecidable.
- i.e., it cannot be solved in any amount of time on any computer.
- More about that later!

Are all NP-complete problems equally hard?

Are all NP-complete problems equally hard?

We solved those in pseudopolynomial time.

Are all NP-complete problems equally hard?

We solved those in pseudopolynomial time.
Could they be "easier" than SAT in some sense?

Strong vs Weak NPhardness

Strong vs Weak NPhardness

- A problem P is strongly NP-hard if it remains NP-hard even when the numerical parameters in the input are given in unary representation.

Strong vs Weak NPhardness

- A problem P is strongly NP-hard if it remains NP-hard even when the numerical parameters in the input are given in unary representation.
- Otherwise, it is weakly NP-hard.

Strong vs Weak NPhardness

- A problem P is strongly NP-hard if it remains NP-hard even when the numerical parameters in the input are given in unary representation.
- Otherwise, it is weakly NP-hard.
- Weakly NP-hard problems admit pseudopolynomial algorithms.

Are all NP-complete problems equally hard?

Are all NP-complete problems equally hard?

Another way to compare: Approximate Solutions

Are all NP-complete problems equally hard?

Another way to compare: Approximate Solutions More about that over the next two lectures!

