
Introduction to Algorithms and Data Structures

Lecture 29: Introduction to Computability

John Longley

School of Informatics
University of Edinburgh

19 March 2024

IADS Lecture 28 Slide 1



Limitative results for algorithms

Are there theoretical limits to what algorithms can ever achieve —
no matter how clever they are?

▶ CLRS 8.1: No general, comparison-based sorting algorithm for
n-element lists can ever do better than Θ(n log n).

▶ Lecture 25: It’s conjectured that 3-SAT (or any other NP-hard
problem) can’t be solved in time O(nd) for any d . (P ̸=NP.)

[NB. We have a long way to go. Not even ruled out that
3-SAT is solvable in O(n) time!]

▶ This+next lecture: Are there problems that can’t be solved by
any algorithm at all — no matter how much time and space
we allow?

IADS Lecture 28 Slide 2



IADS Lecture 28 Slide 3



Church-Turing computability (c. 1936)

Alonzo Church Alan Turing

There’s a fundamental class of functions — the Church-Turing
computable functions — which are generally accepted as coinciding
with the ‘algorithmically computable’ functions (ignoring time and
space limitations).

We’ll focus on partial functions f : N ⇀ N.
(After all, any reasonable ‘data structure’ can ultimately be
represented by just 0’s and 1’s — i.e. as a long binary number!)

Idea extends easily to partial functions f : N× N ⇀ N
(which will sometimes crop up).

IADS Lecture 28 Slide 4



The plan . . .
This lecture:

▶ Precisely define the class of CT-computable functions N ⇀ N.
▶ Review evidence that this includes all possible ‘algorithmically

computable’ functions (the Church-Turing thesis).

▶ Sketch Turing’s construction of a universal machine (origin of
the general-purpose programmable computer!)

▶ * Glance at a crazy idea for a ‘super-Turing’ computer.

Next lecture:

▶ Show that the so-called halting problem is not CT-solvable.

▶ Mention other unsolvable problems in CS/maths.

▶ * Raise some philosophical questions.

▶ * Plug a book I’m working on.

* Not official course material.

IADS Lecture 28 Slide 5



Register machines
Many roads lead to the same class of CT-computable functions. . .

▶ Church used λ-calculus (origins of functional programming!).

▶ Turing used FSMs with infinite memory tape (‘Turing machines’).

▶ Here we’ll use register machines, due to Marvin Minsky.

Machines have a fixed, finite set of registers (say A,B,. . . ,I), each
capable of storing an arbitrary natural number (i.e. integer ≥ 0).

We build machines by plugging together trivial components:

The machine here adds B to A, losing B in the process.

IADS Lecture 28 Slide 6



More register machines

IADS Lecture 28 Slide 7



Functions computable by register machines

To use a register machine to compute e.g. a partial function
N × N ⇀ N, we may supply the inputs in A and B registers, and
read output from A. (Just a convention.)

So let’s say a register machine M computes f : N × N ⇀ N if, for
any m, n ∈ N, the following works:

Suppose we set up the registers with A = m,B = n,C = D =
· · · = 0, then run M.

▶ The computation will terminate if and only if f (m, n) is
defined.

▶ If it does, the final value in A will be the value of f (m, n).

We may say f : N×N ⇀ N is RM-computable if and only if there’s
some register machine that computes f .
E.g. + and ∗ are RM-computable.

Same goes e.g. for 1-argument functions.

IADS Lecture 28 Slide 8



The Church-Turing thesis

A little goes a long way!
It turns out that the class of RM-computable (unary or binary)
partial functions coincides with the class of:

▶ Functions definable in λ-calculus

▶ Functions computable by Turing machines

▶ Functions computable on arbitrary-size natural numbers in your
favourite programming language. (Some work needed to define e.g.
what a Python program would do if time/memory were unlimited.)

That’s because each of these formalisms can simulate the others —
e.g. we could write an ‘interpreter’ for RMs in Python.

From now on, we’ll refer to this class (defined in any of these equiv-
alent ways) as the class of Church-Turing computable functions.

IADS Lecture 28 Slide 9



The Church-Turing thesis

The Church-Turing thesis claims that, for functions N(×N) ⇀ N,
▶ the precisely defined class of CT computable functions

. . . coincides with . . .

▶ the informally recognized class of functions computable by an
algorithm.

We understand the latter as an informal but seemingly clear concept.
E.g. think of what you could compute on paper by following some
precise, intuitively ‘mechanical’ procedure (no choice or creativity)
— given unlimited time, paper, patience etc.

Insofar as this is considered as an informal concept, the CT thesis
isn’t amenable to strict mathematical proof.
Nevertheless, no one seriously doubts it (in the sense that they
think it’s false).

IADS Lecture 28 Slide 10



Why accept the CT thesis?

Arguments sometimes given . . .

1. No one has ever come up with an obviously ‘mechanical’
algorithm that computes anything outside this class.

2. Very many attempts at defining a concept of ‘computable’
function converge on the same class.

3. Turing’s argument: Think about what a human calculator
could in principle do with:
▶ finitely many (distinguishable) mind states
▶ unlimited paper, but finitely many (distinguishable) symbols
▶ finitely many ‘fingers on the page’.

This is in essence what Turing machines model.

Take your pick! In any case, can regard the Thesis as solidly
established and safe to build on.

IADS Lecture 28 Slide 11



Towards Turing’s universal machine

Two key observations re register machines:

▶ A complete set of register values can be coded up as a single
natural number. E.g. the 9-tuple

A = 23 B = 65 C = 00 D = 00 E = 00
F = 00 G = 00 H = 00 I = 01

might be coded as 260000000350000001.

▶ With a bit more work, an entire RM flowchart can also be
coded up as a natural number.

E.g. our adding machine might be coded as

10220400401103003050320200204101 (details unimportant).

IADS Lecture 28 Slide 12



The universal machine

IDEA: If I gave you the numbers
10220400401103003050320200204101 and 350000000
(and you know what the codings were), you could:

▶ Recover the flowchart and register values A=3, B=5, . . .

▶ Simulate the run of this machine with these initial register values.

What’s more, this would itself be a purely algorithmic process.

So we can build a register machine to do it!
We’ll call it the universal machine U.

IADS Lecture 28 Slide 13



The universal machine: illustration

IADS Lecture 28 Slide 14



Universal machines, general-purpose computers

With suitable ‘programming’ (in the A register),
our universal machine can simulate any other 9-register machine.
(Or even itself!)

Turing’s insight that ‘all machines could be simulated by just one
single machine’ had vast repercussions.

Rather than building separate ‘hardware’ for each computing task,
we can build just one piece of hardware which can run many
different pieces of ‘software’.

This is really the origin of the modern general-purpose, pro-
grammable computer!

(Remaining three slides are NON-EXAMINABLE.)

IADS Lecture 28 Slide 15



Philosophical aside: A ‘physical’ Church-Turing thesis?

Both Church and Turing were thinking (initially) of algorithmic
computation by humans (abstracted from time/space limitations).

But now that we have other ‘computing devices’, natural to ask
whether . . .

??? Every function N → N computable by any physical
device whatever is Church-Turing computable. ???

Can view this as a fundamental question about the nature of the
physical universe:

Are we in the sort of universe that allows us (under mild
idealizations) to compute non-CT-computable functions?

Nothing in today’s mainstream (digital) computers offers any hope
of going beyond the ‘CT-computable’ functions. But what other
kinds of computer might be possible?

IADS Lecture 28 Slide 16



Quantum computing

Loosely, QC exploits weird quantum superpositions of multiple
‘computation paths’ to achieve some kind of massive parallelism.

The race is on to make it work in practice!

If it did, would it fundamentally change ‘what we can compute’?

▶ In terms of complexity (and in practice!), yes. E.g. integer
factorization would become polytime computable (best known
classical algorithms are super-polynomial). Bad news for RSA!

▶ In terms of computability, no. Won’t ‘break Turing barrier’.

So we’d have to look elsewhere . . .

IADS Lecture 28 Slide 17



Thought experiment: Black hole computers

Seriously wild suggestion for ‘breaking the Turing barrier’ by Németi
et al :

Some fun to be had here. But none of this undermines the
importance of classical, Church-Turing computability.

IADS Lecture 28 Slide 18


