
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 8: SOLUTIONS

1. Consider the following context free grammar with start symbol S:

S → NP VP PP → Pre NP
S → I VP PP V → ate

NP → Det N Det → the | a
VP → ate NP N → fork | salad
VP → V Pre → with

(a) Convert this grammar to Chomsky Normal Form (see Lecture 22).

Here we follow the order and numbering of steps given in the 2024 lecture slides
and live lecture. (This is slightly different from the order in the video lecture
from 2021. In practice, there is a lot of flexibility and the order of steps doesn’t
matter much for small examples.)

Step 1: Eliminate the ternary rule S → I VP PP. We can do this by introducing
a fresh non-terminal X and replacing the rule by S → I X and X → VP PP.

Steps 2 and 3: There are no ϵ-rules, so these can be omitted. (In general, ϵ-rules
are more typical of formal language grammars than natural language ones.)

Step 4: We deal with the unit rule VP → V by replacing it with VP → ate.

Step 5: We introduce a separate non-terminal for each terminal, which we’ll do
by writing the same word capitalized in Roman font (e.g. I, Ate, The). We also
add corresponding expansion rules (e.g. I → I ; Ate → ate) and then replace all
terminals within non-unary right-hand sides by the corresponding non-terminal
(e.g. S → I VP PP; VP → Ate).

Discarding the rules for non-terminals now unreachable from S (e.g. V, The), the
resulting grammar is now as follows:

S → NP VP I → I
PP → Pre NP Ate → ate
S → I X Det → the | a
X → VP PP N → fork | salad

NP → Det N Pre → with
VP → Ate NP
VP → ate

(Other minor variations are of course acceptable, provided they are indeed in
CNF and are equivalent to the original grammar.)

1

(b) Use the CYK algorithm from Lecture 22 to parse ‘I ate the salad with a fork’.
Using the above CNF grammar, the CYK chart would be:

1 2 3 4 5 6 7
0 I S
1 VP,Ate VP X
2 Det NP
3 N
4 Pre PP
5 Det NP
6 N

(c) How many complete analyses of the sentence do you get? Just the one:

(S (I I) (X (VP (V ate)(NP(Det the)(N salad)))
(PP (Pre with)(NP (Det a) (N fork)))))

(d) Now add a further production rule to your CNF grammar to allow for the alter-
native prepositional phrase attachment, i.e. ‘the salad with a fork’. Revise your
CYK chart or graph to include any new entries this introduces.

(e) We could add a new rule

NP → NP PP

This would add an NP entry to cell (2,7), hence a VP entry to (1,7). However,
no new S entry would be added to (0,7), so there is still just one complete parse.
This is because the grammar lacks the means to derive I from NP.

2. The grammar:

Terminals: (,), ∗, n
Nonterminals: Exp, Ops

Productions: Exp → n Ops | (Exp)

Ops → ϵ | ∗ n Ops

Start symbol: Exp

The parse table:

() ∗ n $
Exp (Exp) n Ops
Ops ϵ ∗ n Ops ϵ

(a) Using this table, apply the LL(1) parsing algorithm to the input (n ∗ n).

2

Operation Input remaining Stack state
(n * n)$ Exp

Lookup (,Exp (n * n)$ (Exp)
Match (n * n)$ Exp)
Lookup n, Exp n * n)$ n Ops)
Match n * n)$ Ops)
Lookup *, Ops * n)$ * n Ops)
Match * n)$ n Ops)
Match n)$ Ops)
Lookup), Ops)$)
Match) $ STACK EMPTIES

AT END OF STRING:
SUCCESS!

(b) For each of the following three input strings, explain how and where an error
arises in the course of the LL(1) parsing algorithm. In each case, suggest a
reasonable error message.

() n) n ∗

� For (), the parser will encounter a blank table entry at), Exp.
Message: “) Found where expression expected.”

� For n), the stack will empty before end of input is reached.
Message: “) Found after end of expression.”

� For n*, the end of input will be reached with n Ops still on the stack, and
the parser gets stuck since the top of the stack is a terminal n no different
from $.
Message: “End of input found where numeric literal expected.”

3. (a) Define the appropriate decision version of the Maximum Independent Set set
problem, called Independent Set.

The decision version of the problem is defined as follows:

Independent Set: Given a graph G = (V,E) and an non-negative integer k as
input, decide whether there is an independent set I of size at least k is G or not.

(b) Show that Independent Set is NP-complete. For the NP-hardness, construct
a polynomial-time reduction from 3SAT.

Hint: Construct “clause gadgets”, i.e., triangles of nodes corresponding to the
three literals of a clause, similarly to the reduction from 3SAT to Vertex Cover
presented in class to show the latter problem is NP-hard.

To construct our reduction, we will start with an arbitrary instance of 3SAT,
i.e., an arbitrary 3CNF formula ϕ with n variables x1, . . . , xn and m clauses
C1, . . . , Cm, and we will construct a specific instance of Independent Set with
k = m such that

ϕ is satisfiable ⇔ there is an independent set of size at least k in G.

We construct the graph G as follows: For every clause Cj with variables xj1, xj2

and xj3 we construct a triangle (a clause gadget) with nodes vj1, vj2 and vj3, such
that each one of them is connected with each other via an edge. See Figure 1.

3

Figure 1: The construction of the graph G in the reduction. Figure taken from KT (Figure
8.3.).

We also add an edge between nodes that correspond to “complementary” vari-
ables xi and ¬xi. For example, if x21 = ¬x11, then we add an edge (v11, v21) in
the graph. Again, see Figure 1. We refer to those edges as “conflict” edges.

We will argue both directions of the equivalence above. First, assume that ϕ is
satisfiable and let T be a truth assignment to its variables. That means that at
least one variable xjℓ in clause Cj has been assigned the value true, i.e., there
exists ℓ ∈ {1, 2, 3} such that T (xjℓ) = 1. For each clause pick (only) one of these
variables arbitrarily and call it a chosen variable. In our graph G, let I be a set of
nodes in G such that vjℓ ∈ I if any only if xjℓ is a chosen variable. First, observe
that I has size k = m, since we only pick one node from each clause gadget
(triangle) and we have k = m triangles. Now observe that I is an independent
set: for each triangle, only one node is selected, so there are no edges shared
between nodes in I within each triangle. Additionally, for each conflict edge,
only one of the two endpoints is selected (as only one of them can be set to 1 by
T) by construction.

Now assume that there exists an independent set I of size at least k in G. By
virtue of being an independent set, it must contain at most one node from each
triangle, so its size is at most k. That means that its size is exactly k and that
it contains exactly one node from each triangle. To create a truth assignment,
we set T (xjℓ) = 1 if the node corresponding to xjℓ is in I and T (xjℓ) = 0 if the
node corresponding to ¬xjℓ is in I. Node that it is not possible for both of these
nodes to be in I, as there is an edge between them in G. Our truth assignment
satisfies one variable from each clause and does not assign “conflicting” values to
complementary variables, hence it satisfies the formula ϕ.

(c) Assume that you have an oracle (i.e., an algorithm that runs in time O(1) every-
time it is called) to solve the Maximum Independent Set problem. Explain
how to use this oracle to solve the Independent Set problem in polynomial
time.

This is straightforward, by observing that our algorithm can simply solve the
Maximum Independent Set problem and then check if the size of the returned

4

indepndent set is at least k or not. This takes time O(|I|) assuming we don’t
have access to the size of the set.

(d) Assume that you have an oracle to solve the Independent Set problem. Explain
how to use this oracle to solve the Maximum Independent Set problem in
polynomial time.

This is the other direction, which is more intricate. Let |V | = n. First, we
will find the size of the maximum independent set. For that, we can check
every possible size from k = 0 to k = n. We know that there is definitely an
independent set of size 0, so the “answer” to the input with G and k = 0 is “yes”.
If there is an independent set of size n (which happens only when all the nodes
are isolated), then the answer to the input with G and k = n is also “yes” and
we return k = n. Otherwise, it is “no”, and the answer has to switch from “yes”
to “know” for some value of k between 0 and n. We can find that value using
binary search in time O(lg n) because the size of the maximum independent set is
monotone: If there is an independent set of size k1, there is also an independent
set of size k2 < k1, and if there is no independent set of size k1, there there is no
independent set of size k2 > k1. Let k

∗ be the size of the maximum independent
set we find this way.

Next, we need to find the independent set I itself. Here we work similarly to the
case of Vertex Cover. We consider node n of the graph and ask our oracle
whether there is an independent set of size k∗ on input G′, where G′ is obtained
from G by removing node n and all its incident edges. If the answer is “yes”,
that means that n does not have to be part of the optimal solution, so we do not
include it in I and continue in the same manner. If the answer is “no”, then we
have to include n in the optimal solution I, and we run our oracle on input G′

and k = k∗ − 1. In time O(n) we will construct the independent set I with size
k∗.

4. (∗) A k-colouring of a graph G is a function f : V → {1, 2, . . . , k} mapping nodes to
colours, such that for any nodes u and v such that (u, v) ∈ E, it holds that f(u) ̸= f(v).

Consider the 3-colouring problem: Given a graph G as input, decide whether there
is a 3-colouring of G. Prove that 3-colouring is NP-complete. For the NP-hardness,
construct a polynomial-time reduction from 3SAT.

It is easy to see that 3-colouring is in NP: if we are given an assignment of colours to
the vertices, we can check in polynomial time whether there exist neighbouring ver-
tices with the same colour. To how the NP-hardness of the problem, we will construct
a polynomial time reduction from 3SAT. Let ϕ be a 3SAT formula. We will have the
following gadgets.

Gadget 1: A triangle of three nodes, labelled T , F and O. The colour assigned to T
will be interpreted as “true” for ϕ and the colour assigned to F will be interpreted as
“false”. The colour assigned to O will simply be the third colour.

Gadget 2: For each variable v in ϕ, construct two vertices v and v̄. Add an edge
(v, v̄) and edges (v,O) and (v̄, O) (i.e., v, v̄ and O form a triangle).

Gagdet 3: This is the more complicated gadget shown in the figure (corresponding
to the clause x ∨ y ∨ z̄).

5

Suppose that ϕ is satisfiable, and let x be a satisfying assignment. For a variable v,
if v is set to true, colour the corresponding vertex by T (and since v̄ is set to false,
colour v̄ by T). Likewise, if v is set to false, colour the corresponding vertex v by F
and v̄ by T . Node that since v and v̄ are connected only to O and v̄ and v respectively
in the Gadget 2 triangles, that part of the graph is 3-colourable. It remains to assign
colours to Gadget 3, avoiding having any neighbours with the same colour.

Looking at the gadget of the figure, label the non-labelled vertices 1, 2, 3, 4 starting
from the left and then starting from the top in the middle column. Consider vertex
1, which is a neighbour of both x and T . If x is coloured T , then vertex 1 can be set
to either O or F and if x is coloured F , then it must be set to O. Similarly for vertex
4, which is a neighbour of both T and y. If z̄ is coloured T , we can set vertex 2 to F ,
vertex 1 to O, vertex 2 to T and vertex 4 to O and we have a 3-colouring. If z̄ is set
to F , then we consider the labelling of vertices x and y. Considering a few cases, we
can verify that there is always a 3-colouring of the gadget.

Supppose now that we have a 3-colouring of the graph. Then, for every vertex u
is coloured either T or F , we set the corresponding variable in ϕ to true or false
accordingly. From the fact that the labelling is a 3-colouring and the way the graph
is constructed, we know that two nodes v and v̄ cannot receive the same colour, and
therefore it is not possible for both variable v and its negation to receive the same
value in the truth assignment. Finally, the correctness of the reduction follows from
the fact that it is not possible for any vertex v or v̄ to receive the colour O, because
all of these vertices are connected to a vertex coloured O, and that would violate the
fact that the graph is 3-colourable.

John Longley and Aris Filos-Ratsikas

February 2023

6

