
Compiling Techniques
Lecture 16: Dataflow Analysis

Idea: Change Representation that makes def-use chains explicit

As a first step, we translate the nested AST representation into a graph representation:

2

assign() {

 id_expr() ["id" = "x"] } {

 literal() ["value" = 1 : !i32] }

assign() {

 id_expr() ["id" = "y"] } {

 binary_expr() ["op" = "+"] {

 id_expr() ["id" = "x"] } {

 literal() ["value" = 1 : !i32] } }

assign() {

 id_expr() ["id" = "x"] } {

 literal() ["value" = 2 : !i32] }

assign() {

 id_expr() ["id" = "z"] } {

 binary_expr() ["op" = "+"] {

 id_expr() ["id" = "x"] } {

 literal() ["value" = 1 : !i32] } }

AST

 %l0 : !int = literal() ["value" = 1 : !i32]

 assign(%x : !int, %l0 : !int)

 %l1 : !int = literal() ["value" = 1 : !i32]

 %t0 : !int = binary_expr(%x : !int, %l1 : !int) ["op" = "+"]

 assign(%y : !int, %t0 : !int)

 %l2 : !int = literal() ["value" = 2 : !i32]

 assign(%x : !int, %l2 : !int)

 %l3 : !int = literal() ["value" = 1 : !i32]

 %t1 : !int = binary_expr(%x : !int, %l3 : !int) ["op" = "+"]

 assign(%z : !int, %t1 : !int)

Graph-based IR

AST to Graph IR Translation Overview

- Recursively visit the AST nodes

- For each AST node without children create corresponding Graph node

- For each AST node with children create list of Graph nodes

- Replace nested regions representing AST children with Names (%x)

- Maintain context during translation that relates
variable names in the AST with Names in the Graph (%x)

3

- In the Graph IR operations (can) have a result type

- To simplify the translation it helps to change the type checking
to add the type of every expression as an attribute to the AST node

- Then the type of an expression in the AST is directly available when
translating the AST node

Types in the Translation

4

Control-flow and Data-flow Analysis

Control-flow / data-flow analysis aim to understand the program’s behaviour
without executing it by analysing the possible different branches a program can
take and where variables are accessed.

Analysis enables beneficial program transformations:

Optimizations = Analysis + Transformation

5

Data-flow Analysis

Examples:

- Reaching Definitions
- Initialised Variables
- Constant Propagation
- Sign Analysis
- Liveness of variables

6

Data-flow analysis gathers information for each program point
by analysing the static code approximating its dynamic behaviour

Is z ever initialised?

What values are
possible for y here?

Is this computation
ever used?

Reaching Analysis: Reaching definitions

Reaching
definitions of a?

7

Definition of variable v at program point d reaches point u if
there exists a control-flow path p from d to u such that

no definition of v appears on that path.

Reaching Analysis: Reaching definitions

8

Definition of variable v at program point d reaches point u if
there exists a control-flow path p from d to u such that

no definition of v appears on that path.

Reaching
definitions of a?

Reaching Analysis: Reaching definitions

9

Definition of variable v at program point d reaches point u if
there exists a control-flow path p from d to u such that

no definition of v appears on that path.

Reaching
definitions of a?

Reaching Analysis: Reaching definitions

10

Definition of variable v at program point d reaches point u if
there exists a control-flow path p from d to u such that

no definition of v appears on that path.

Reaching
definitions of a?

Local Reaching Analysis

A local analysis works only on a single basic block

Local Reaching Analysis:

- Maintain a set of current reaching definitions
- Add subscripts to all variable definitions
- Go through all statements from start to end
- If assignment statement xi := …

- For all j remove (kill) xj
- Add xi to the set

- Otherwise, the set remains unchanged

11

Local Reaching Analysis

12

Local Reaching Analysis

13

Local Reaching Analysis

14

Local Reaching Analysis

15

Local Reaching Analysis

16

Local Reaching Analysis

17

Global Reaching Analysis

Local Analysis is not enough, we must think about control flow!

- Control flow complicates matters

- Refine definition of program point:
- In program point for a statement: Entering the statement
- Out program point for a statement: Leaving the statement

- We will try the previous approach and see where it fails

18

Global Reaching Analysis
Control flow example; try the previous approach

19

Global Reaching Analysis
s4 has 2 predecessors; and we don’t know Out(s6) yet

20

Global Reaching Analysis
But, we know at least that a1 reaches s4

21

Global Reaching Analysis
s5 has 2 predecessors

22

Global Reaching Analysis
All incoming definitions reach => compute union of the two sets

23

Global Reaching Analysis
Inconsistency, as we now know more about Out(s6)

24

Global Reaching Analysis
All incoming definitions reach => union => inconsistency

25

Global Reaching Analysis
Inconsistency

26

Global Reaching Analysis
Consistent state

27

Reaching Analysis: Dataflow equations

Let us formalise our intuition

- For each statement s, compute Out(s) from In(s)
If s is an assignment to x, delete all definitions of x, and add new definitions:

Out(s : xi := …) = (In(s) – { xj; ∀j }) ∪ {xi}

- Multiple incoming edges must merge to compute In(s)
In(s) = ⋃ Out(p)

- We start with an empty set
Init(s) = Ø

28

∀ p ∊ Pred(s)

Reaching Analysis: Observations

- Analysis assumes a control flow graph

- Start with a conservative approximation

- Refine the approximations

- Stop when consistent (there are no further changes)

- Information flows forward from a statement to its successors

29

General Dataflow Analysis

- Direction – forward or backward
- Transfer function – computes effect of statement

e.g. Out(s) = (In(s) – Kill(s)) ∪ Gen(s)
- Meet operator – merges values from multiple incoming edges

e.g. In(s) = ⋃ Out(p)

- Value set – the information being passed around
e.g. Sets of definitions

- Initial values
Should be most conservative value; Start node often a special case

30

∀ p ∊ Pred(s)

Iterative Round-Robin Algorithm

31

for each node, start_node do
 Initialise start_node

while values changing do
 for each node do
 Apply meet function // compute In(s)

Apply transfer function // compute Out(s)

Reaching Analysis with Dataflow Iterative Algorithm

32

Reaching Analysis with Dataflow Iterative Algorithm

33

Reaching Analysis with Dataflow Iterative Algorithm

34

Reaching Analysis with Dataflow Iterative Algorithm

35

Reaching Analysis with Dataflow Iterative Algorithm

36

Reaching Analysis with Dataflow Iterative Algorithm

37

Reaching Analysis with Dataflow Iterative Algorithm

38

Reaching Analysis with Dataflow Iterative Algorithm

39

Reaching Analysis with Dataflow Iterative Algorithm

40

Reaching Analysis with Dataflow Iterative Algorithm

41

Reaching Analysis with Dataflow Iterative Algorithm

42

Reaching Analysis with Dataflow Iterative Algorithm

43

Reaching Analysis with Dataflow Iterative Algorithm

44

Reaching Analysis with Dataflow Iterative Algorithm

45

Iterative Algorithm Termination

Does the iterative round-robin is guaranteed to terminate?

46

Iterative Algorithm Termination

Does the iterative round-robin is guaranteed to terminate?

Yes!

- Each step of the iteration can only grow a set or leave unchanged
- Finite number of elements in each set, so finite number of times can change
- Each iteration either has a change or stops
- Therefore, must terminate!

47

Iterative Algorithm: Improving Performance

- Direction (forward vs. backward) can have a big impact on performance

- Round-Robin Algorithm is slow, may require many passes through nodes

- Can speed up by considering basic blocks, rather than individual nodes

- Only nodes which have inputs changed need to be processed,
keep track with a work list

48

Liveness Analysis - What & why?

Intuition: A variable is live at a program point if its current value may be read
during the remaining execution of the program; otherwise, the variable is dead.

Useful for register allocation and dead code elimination

49

Legal transformation
due to liveness information

y and z can be stored
in the same register

Computation
was never used

Definition of Liveness

Definition
A variable v is live before a CFG node s if

1. v ∈ usevar(s), or
2. ∃ a direct path from s to a node that uses v,

 and that path does not go through
 a node that defines (overrides) v.

Examples:
Is x life before s = 5? Yes, x ∈ {x} = usevar(5)
Is z life before s = 5? No, we first hit a def at 8

50

Backward Dataflow Analysis

- Direction – backward
- Transfer function – computes statement effect

 In(s) = fs(Out(s))
- Meet operator – merges values from multiple outcoming edges

Out(s) = ⋀
∀ b ∊ Succ(s) In(b)

- Value set – the information being passed around
e.g. Sets of variables

- Initial values
Should be most conservative value; Start node often a special case

51

Liveness as Dataflow Analysis

- Direction – backward
- Transfer function – computes statement effect

live(n) = (candidates(n) – defvar(n)) ∪ usevar(n)
- Meet operator – merges values from multiple outcoming edges

candidates(n) = ⋃ live(s)

- Value set – the information being passed around
Set of variables + Set of candidates

- Initial values
Empty sets

52

∀ s ∊ Succ(n)

Out(n) = candidates(n)
In(n) = live(n)
fn(x) = (x – def(n)) ∪ use(n)

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Data flow Analysis Limitations

Data flow analysis has some limitations:

- Static analysis may be (very) conservative
- CFG is only a static approximation of the dynamic control flow
- Pointers introduce aliases:

- E.g. *x = 10; Does x point to another variable, y or z?
That would give a definition of y or z. May not know at compile time which …

- Precise alias analysis still an open problem
- Array access; generally cannot tell which indices are used
- Reasoning across function calls …

74

