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Idea: Change Representation that makes def-use chains explicit

As a first step, we translate the nested AST representation into a graph representation:
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assign() {

  id_expr() ["id" = "x"] } {

  literal() ["value" = 1 : !i32]  }

assign() {

  id_expr() ["id" = "y"] } {

  binary_expr() ["op" = "+"] {

    id_expr() ["id" = "x"] } {

    literal() ["value" = 1 : !i32] } }

assign() {

  id_expr() ["id" = "x"] } {

  literal() ["value" = 2 : !i32] }

assign() {

  id_expr() ["id" = "z"] } {

  binary_expr() ["op" = "+"] {

    id_expr() ["id" = "x"] } {

    literal() ["value" = 1 : !i32] } }

AST

  %l0 : !int = literal() ["value" = 1 : !i32]

  assign(%x : !int, %l0 : !int)

  %l1 : !int = literal() ["value" = 1 : !i32]

  %t0 : !int = binary_expr(%x : !int, %l1 : !int) ["op" = "+"]

  assign(%y : !int, %t0 : !int)

  %l2 : !int = literal() ["value" = 2 : !i32]

  assign(%x : !int, %l2 : !int)

  %l3 : !int = literal() ["value" = 1 : !i32]

  %t1 : !int = binary_expr(%x : !int, %l3 : !int) ["op" = "+"]

  assign(%z : !int, %t1 : !int)

Graph-based IR



AST to Graph IR Translation Overview

- Recursively visit the AST nodes

- For each AST node without children create corresponding Graph node

- For each AST node with children create list of Graph nodes

- Replace nested regions representing AST children with Names (%x)

- Maintain context during translation that relates
variable names in the AST with Names in the Graph (%x)
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- In the Graph IR operations (can) have a result type

- To simplify the translation it helps to change the type checking
to add the type of every expression as an attribute to the AST node

- Then the type of an expression in the AST is directly available when
translating the AST node

Types in the Translation
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Control-flow and Data-flow Analysis

Control-flow / data-flow analysis aim to understand the program’s behaviour 
without executing it by analysing the possible different branches a program can 
take and where variables are accessed.

Analysis enables beneficial program transformations:

Optimizations = Analysis + Transformation
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Data-flow Analysis

Examples:

- Reaching Definitions
- Initialised Variables
- Constant Propagation
- Sign Analysis
- Liveness of variables
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Data-flow analysis gathers information for each program point
by analysing the static code approximating its dynamic behaviour

Is z ever initialised?

What values are
possible for y here?

Is this computation 
ever used?



Reaching Analysis: Reaching definitions

Reaching
definitions of a?
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Definition of variable v at program point d reaches point u if
there exists a control-flow path p from d to u such that

no definition of v appears on that path.
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Reaching Analysis: Reaching definitions
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Local Reaching Analysis

A local analysis works only on a single basic block

Local Reaching Analysis:

- Maintain a set of current reaching definitions
- Add subscripts to all variable definitions
- Go through all statements from start to end
-  If assignment statement xi := …

- For all j remove (kill) xj 
- Add xi to the set

- Otherwise, the set remains unchanged

11



Local Reaching Analysis
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Local Reaching Analysis
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Local Reaching Analysis
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Local Reaching Analysis
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Local Reaching Analysis
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Local Reaching Analysis
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Global Reaching Analysis

Local Analysis is not enough, we must think about control flow!

- Control flow complicates matters

- Refine definition of program point:
- In program point for a statement: Entering the statement
- Out program point for a statement: Leaving the statement

- We will try the previous approach and see where it fails
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Global Reaching Analysis
Control flow example; try the previous approach
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Global Reaching Analysis
s4 has 2 predecessors; and we don’t know Out(s6) yet
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Global Reaching Analysis
But, we know at least that a1 reaches s4
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Global Reaching Analysis
s5  has 2 predecessors 
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Global Reaching Analysis
All incoming definitions reach => compute union of the two sets
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Global Reaching Analysis
Inconsistency, as we now know more about Out(s6)
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Global Reaching Analysis
All incoming definitions reach => union => inconsistency
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Global Reaching Analysis
Inconsistency
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Global Reaching Analysis
Consistent state
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Reaching Analysis: Dataflow equations

Let us formalise our intuition

- For each statement s, compute Out(s) from In(s)
If s is an assignment to x, delete all definitions of x, and add new definitions:

Out(s : xi := …) = (In(s) – { xj; ∀j }) ∪ {xi}

- Multiple incoming edges must merge to compute In(s)
In(s) =       ⋃      Out(p)

- We start with an empty set
Init(s) = Ø
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∀ p ∊ Pred(s)



Reaching Analysis: Observations

- Analysis assumes a control flow graph

- Start with a conservative approximation

- Refine the approximations

- Stop when consistent (there are no further changes)

- Information flows forward from a statement to its successors
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General Dataflow Analysis

- Direction – forward or backward
- Transfer function – computes effect of statement

e.g. Out(s) = (In(s) – Kill(s)) ∪ Gen(s)
- Meet operator – merges values from multiple incoming edges

e.g. In(s) =       ⋃      Out(p)

- Value set – the information being passed around
e.g. Sets of definitions

- Initial values
Should be most conservative value; Start node often a special case
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∀ p ∊ Pred(s)



Iterative Round-Robin Algorithm
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for each node, start_node do
  Initialise start_node

while values changing do
  for each node do
    Apply meet function  // compute In(s)

Apply transfer function // compute Out(s)



Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm

35



Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Reaching Analysis with Dataflow Iterative Algorithm
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Iterative Algorithm Termination

Does the iterative round-robin is guaranteed to terminate?
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Iterative Algorithm Termination

Does the iterative round-robin is guaranteed to terminate?

Yes!

- Each step of the iteration can only grow a set or leave unchanged
- Finite number of elements in each set, so finite number of times can change
- Each iteration either has a change or stops
- Therefore, must terminate!
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Iterative Algorithm: Improving Performance

- Direction (forward vs. backward) can have a big impact on performance

- Round-Robin Algorithm is slow, may require many passes through nodes

- Can speed up by considering basic blocks, rather than individual nodes

- Only nodes which have inputs changed need to be processed,
keep track with a work list
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Liveness Analysis - What & why?

Intuition: A variable is live at a program point if its current value may be read 
during the remaining execution of the program; otherwise, the variable is dead.

Useful for register allocation and dead code elimination
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Legal transformation
due to liveness information

y and z can be stored
in the same register

Computation
was never used



Definition of Liveness

Definition
A variable v is live before a CFG node s if

1. v ∈ usevar(s), or
2. ∃ a direct path from s to a node that uses v,

   and  that path does not go through
   a node that defines (overrides) v.

Examples:
Is x life before s = 5? Yes, x ∈ {x} = usevar(5)
Is z life before s = 5? No, we first hit a def at 8
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Backward Dataflow Analysis

- Direction – backward
- Transfer function – computes statement effect

  In(s) = fs(Out(s))
- Meet operator – merges values from multiple outcoming edges

Out(s) =  ⋀ 
∀ b ∊ Succ(s) In(b)

- Value set – the information being passed around
e.g. Sets of variables

- Initial values
Should be most conservative value; Start node often a special case
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Liveness as Dataflow Analysis

- Direction – backward
- Transfer function – computes statement effect

live(n) = (candidates(n) – defvar(n)) ∪ usevar(n)
- Meet operator – merges values from multiple outcoming edges

candidates(n) =       ⋃      live(s)

- Value set – the information being passed around
Set of variables + Set of candidates

- Initial values
Empty sets
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∀ s ∊ Succ(n)

Out(n)  = candidates(n)
In(n)     = live(n)
fn(x)      = (x – def(n)) ∪ use(n)
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Data flow Analysis Limitations

Data flow analysis has some limitations:

- Static analysis may be (very) conservative
- CFG is only a static approximation of the dynamic control flow
- Pointers introduce aliases:

- E.g. *x = 10; Does x point to another variable, y or z?
That would give a definition of y or z. May not know at compile time which …

- Precise alias analysis still an open problem
- Array access; generally cannot tell which indices are used
- Reasoning across function calls …
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