Compiling Techniques

Lecture 16: Dataflow Analysis

Idea: Change Representation that makes def-use chains explicit

As a first step, we translate the nested AST representation into a graph representation:

```
AST
                                                                                                     Graph-based IR
assign() {
 id_expr() ["id" = "x"] } {
 literal() ["value" = 1 : !i32] }
assign() {
                                                          %10 : !int = literal() ["value" = 1 : !i32]
 id_expr() ["id" = "y"] } {
                                                           assign(%x : !int, %10 : !int)
 binary_expr() ["op" = "+"] {
                                                          %11 : !int = literal() ["value" = 1 : !i32]
   id expr() ["id" = "x"] } {
                                                          %t0 : !int = binary_expr(%x : !int, %l1 : !int) ["op" = "+"]
   literal() ["value" = 1 : !i32] } }
                                                          assign(%y : !int, %t0 : !int)
assign() {
                                                          %12 : !int = literal() ["value" = 2 : !i32]
 id_expr() ["id" = "x"] } {
 literal() ["value" = 2 : !i32] }
                                                           assign(%x : !int, %l2 : !int)
assign() {
                                                          %13 : !int = literal() ["value" = 1 : !i32]
 id_expr() ["id" = "z"] } {
                                                          %t1 : !int = binary_expr(%x : !int, %13 : !int) ["op" = "+"]
 binary_expr() ["op" = "+"] {
                                                           assign(%z : !int, %t1 : !int)
   id expr() ["id" = "x"] } {
      literal() ["value" = 1 : !i32] } }
```

AST to Graph IR Translation Overview

- Recursively visit the AST nodes
- For each AST node without children create corresponding Graph node
- For each AST node with children create list of Graph nodes
- Replace nested regions representing AST children with Names (%x)
- Maintain context during translation that relates variable names in the AST with Names in the Graph (%*x*)

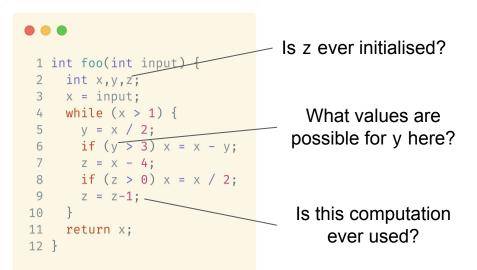
Types in the Translation

- In the Graph IR operations (can) have a result type
- To simplify the translation it helps to change the type checking to add the type of every expression as an attribute to the AST node
- Then the type of an expression in the AST is directly available when translating the AST node

Control-flow and Data-flow Analysis

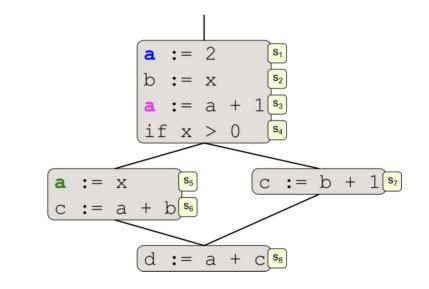
Control-flow / data-flow analysis aim to understand the program's behaviour without executing it by analysing the possible different branches a program can take and where variables are accessed.

Analysis enables beneficial program transformations:

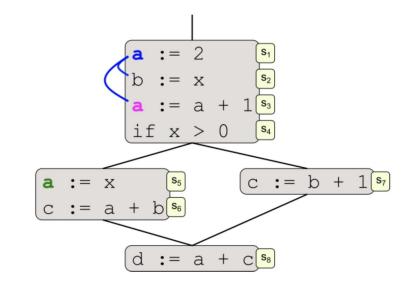

Optimizations = Analysis + Transformation

Data-flow Analysis

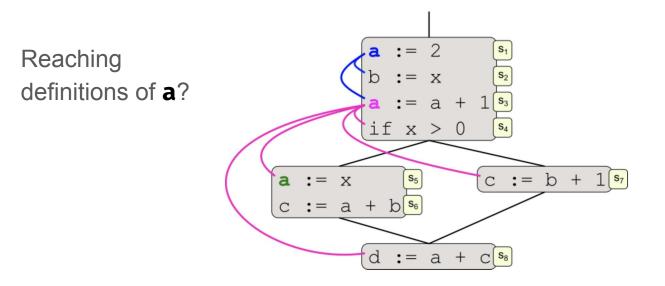
Data-flow analysis gathers information for *each program point* by analysing the static code approximating its **dynamic** behaviour


Examples:

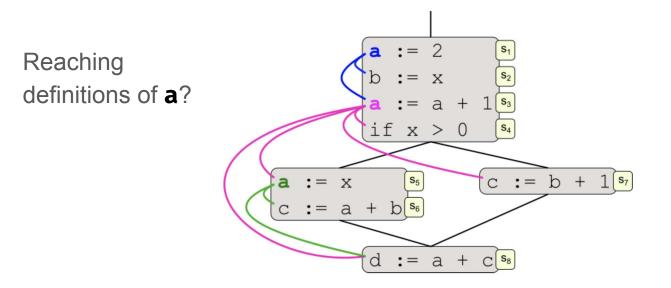
- Reaching Definitions
- Initialised Variables
- Constant Propagation
- Sign Analysis
- Liveness of variables


Definition of variable **v** at program point **d** reaches point **u** if there exists a control-flow path **p** from **d** to **u** such that no definition of **v** appears on that path.

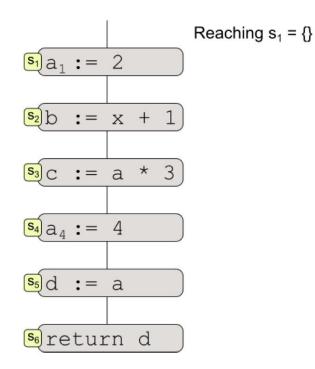
Reaching definitions of **a**?

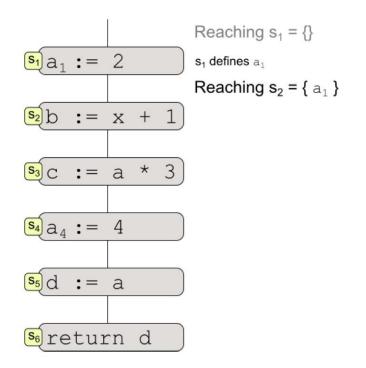


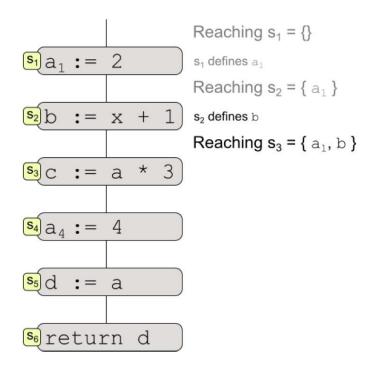
Definition of variable **v** at program point **d** reaches point **u** if there exists a control-flow path **p** from **d** to **u** such that no definition of **v** appears on that path.

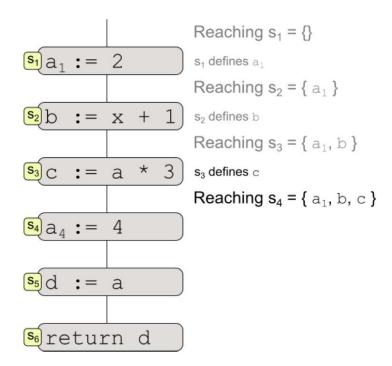

Reaching definitions of **a**?

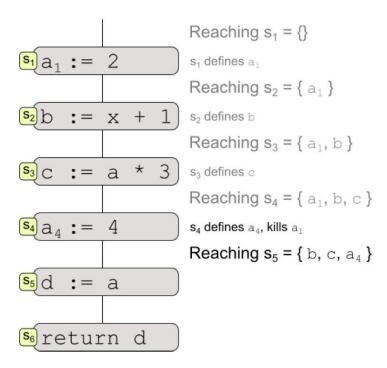
Definition of variable **v** at program point **d** reaches point **u** if there exists a control-flow path **p** from **d** to **u** such that no definition of **v** appears on that path.

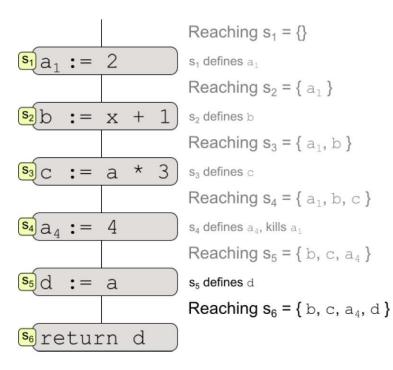


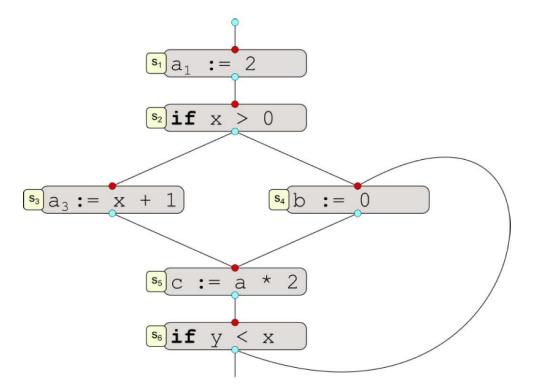

Definition of variable **v** at program point **d** reaches point **u** if there exists a control-flow path **p** from **d** to **u** such that no definition of **v** appears on that path.

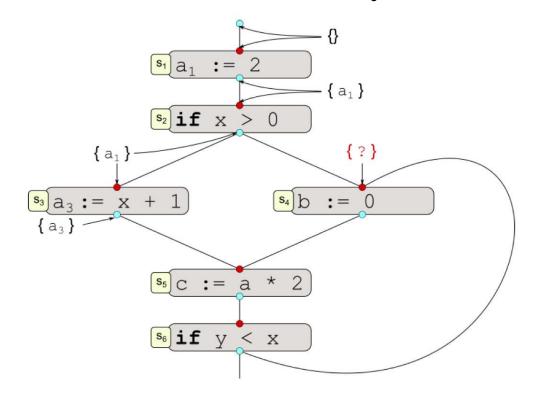



A local analysis works only on a single basic block

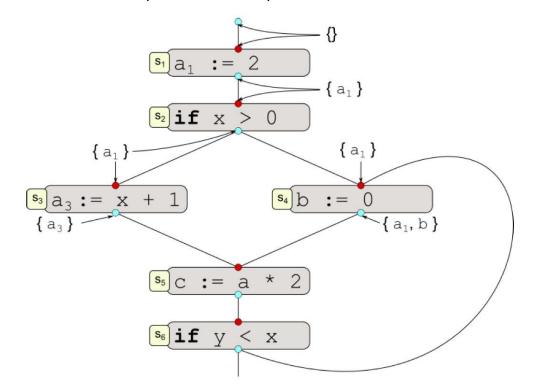

- Maintain a set of current reaching definitions
- Add subscripts to all variable definitions
- Go through all statements from start to end
- If assignment statement $x_i := ...$
 - For all **j** remove (kill) **x**_i
 - Add **x**_i to the set
- Otherwise, the set remains unchanged

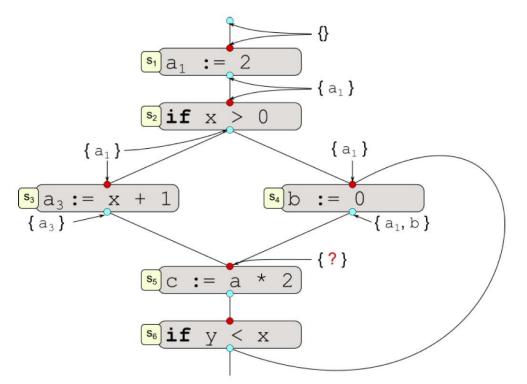


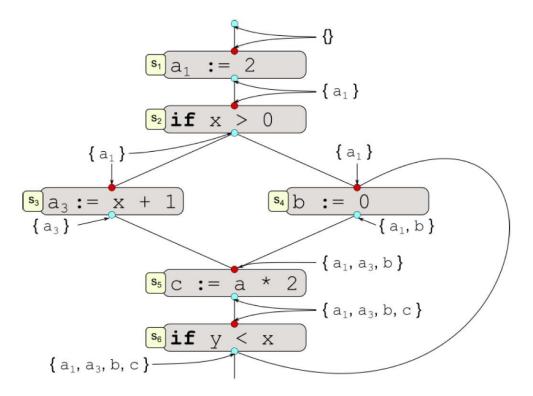


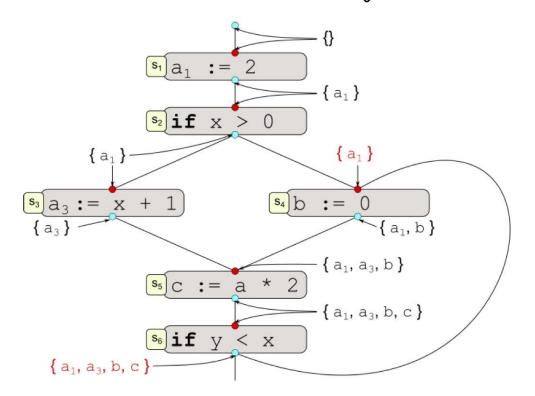

Local Analysis is not enough, we must think about control flow!

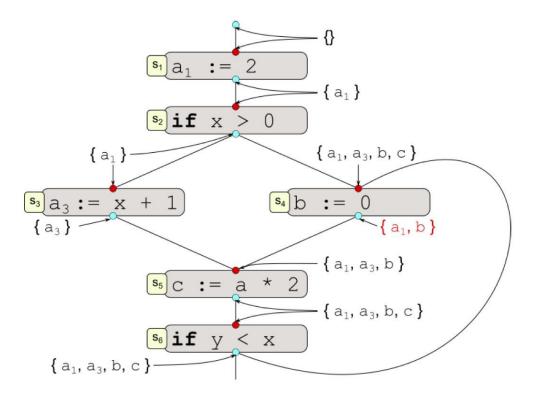
- Control flow complicates matters
- Refine definition of program point:
 - *In* program point for a statement: Entering the statement
 - *Out* program point for a statement: Leaving the statement
- We will try the previous approach and see where it fails

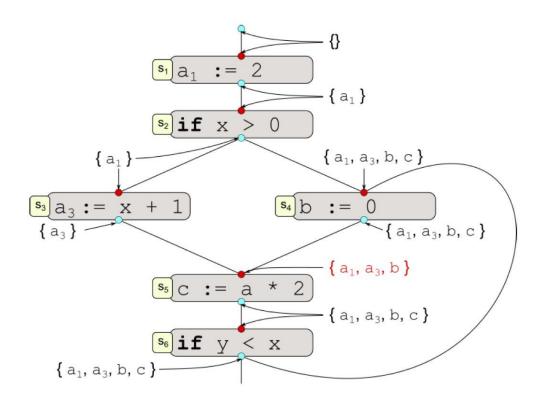

Control flow example; try the previous approach


 s_4 has 2 predecessors; and we don't know $Out(s_6)$ yet


But, we know at least that a_1 reaches s_4


 $\mathbf{s}_{\mathbf{5}}$ has 2 predecessors


All incoming definitions reach \Rightarrow compute union of the two sets


Inconsistency, as we now know more about $Out(s_6)$

All incoming definitions reach \Rightarrow union \Rightarrow inconsistency

Inconsistency

Consistent state

Reaching Analysis: Dataflow equations

Let us formalise our intuition

- For each statement *s*, compute *Out*(*s*) from *In*(*s*)
 If s is an assignment to *x*, delete all definitions of *x*, and add new definitions:
 Out(*s* : *x_i* := ...) = (*In*(*s*) { *x_j*; ∀*j* }) ∪ {*x_i*}
- Multiple incoming edges must merge to compute *ln(s) ln(s)* = ∪ *Out(p)* ∀ p ∈ *Pred(s)*
- We start with an empty set
 Init(s) = Ø

Reaching Analysis: Observations

- Analysis assumes a control flow graph
- Start with a conservative approximation
- Refine the approximations
- Stop when consistent (there are no further changes)
- Information flows *forward* from a statement to its successors

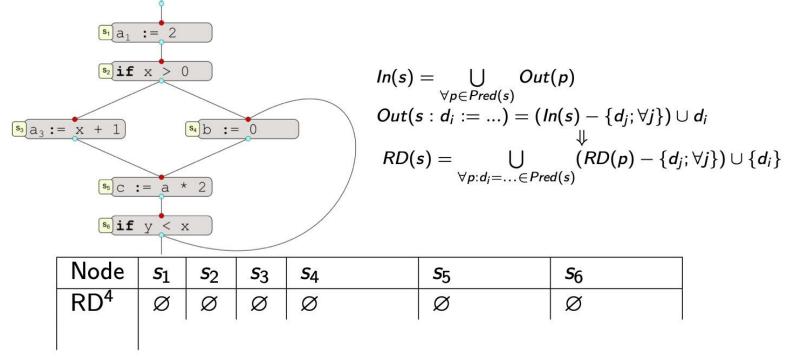
General Dataflow Analysis

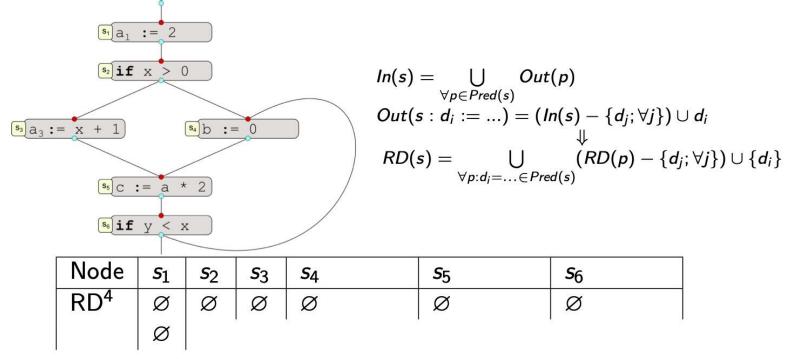
- **Direction** forward or backward
- Transfer function computes effect of statement

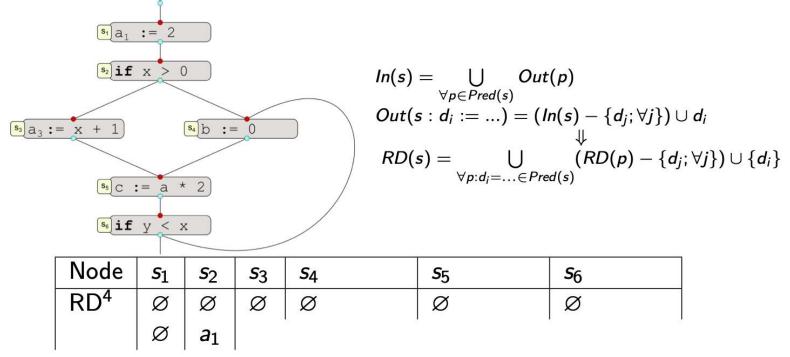
e.g. $Out(s) = (In(s) - Kill(s)) \cup Gen(s)$

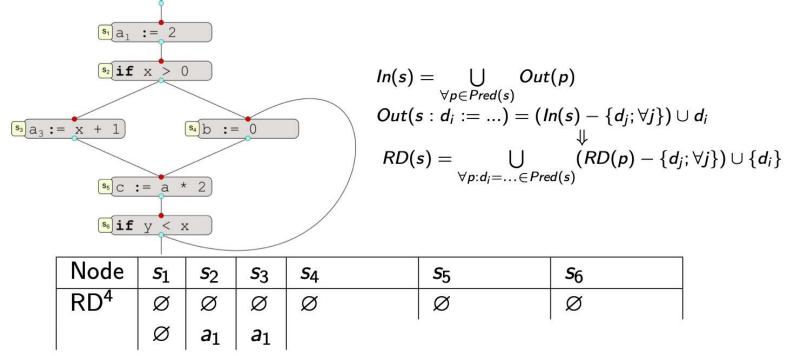
- Meet operator – merges values from multiple incoming edges

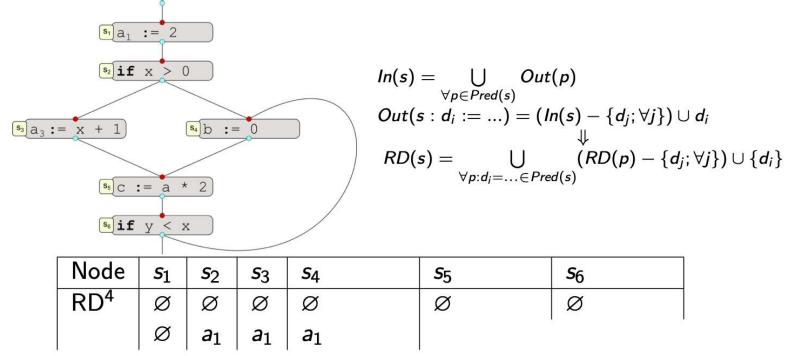
e.g. *In*(s) = ∪ *Out*(p) ∀ p ∈ *Pred*(s)

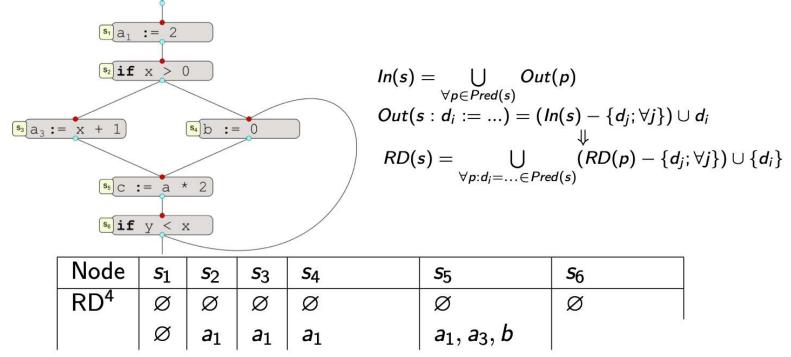

- Value set the information being passed around e.g. Sets of definitions
- Initial values

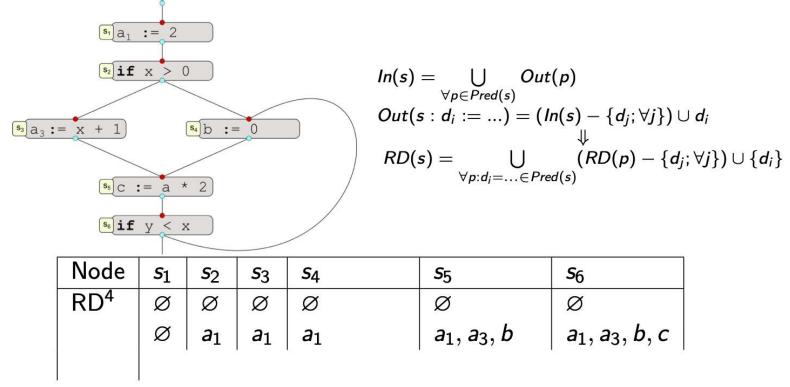

Should be most conservative value; Start node often a special case

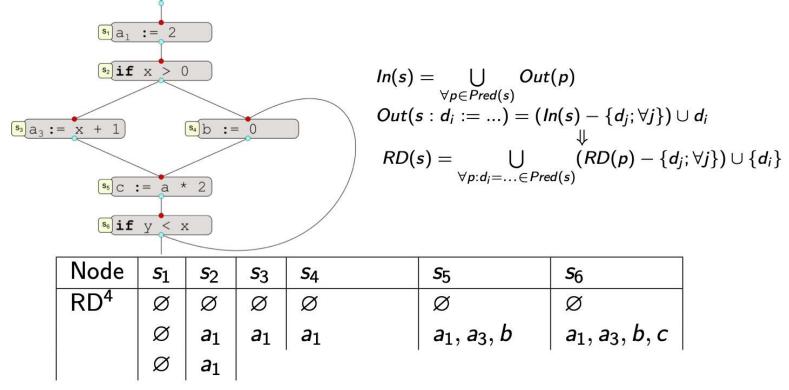

Iterative Round-Robin Algorithm

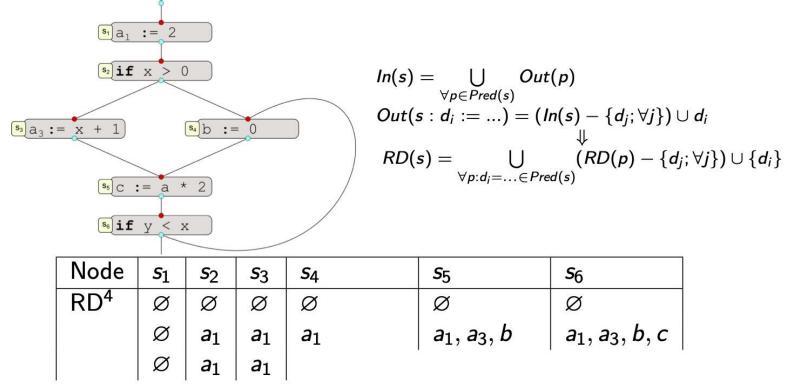

for each node, start_node do Initialise start node

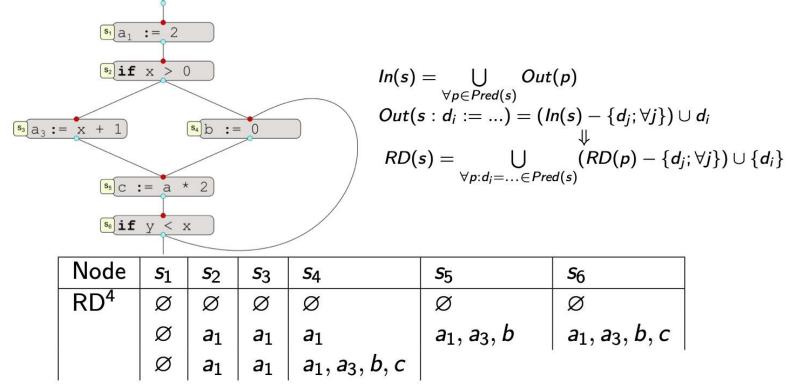

```
while values changing do
  for each node do
   Apply meet function // compute In(s)
   Apply transfer function // compute Out(s)
```

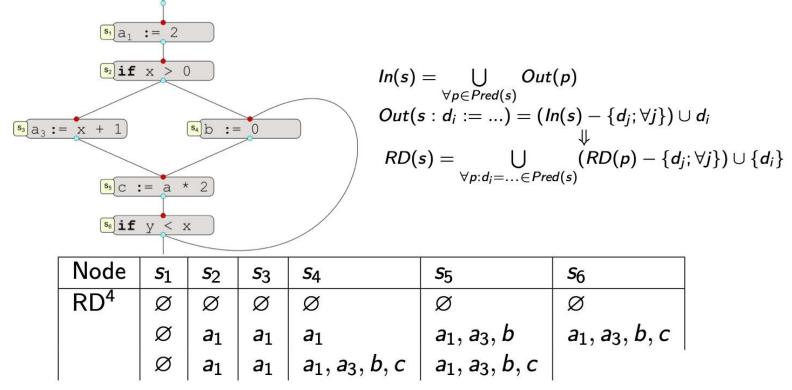


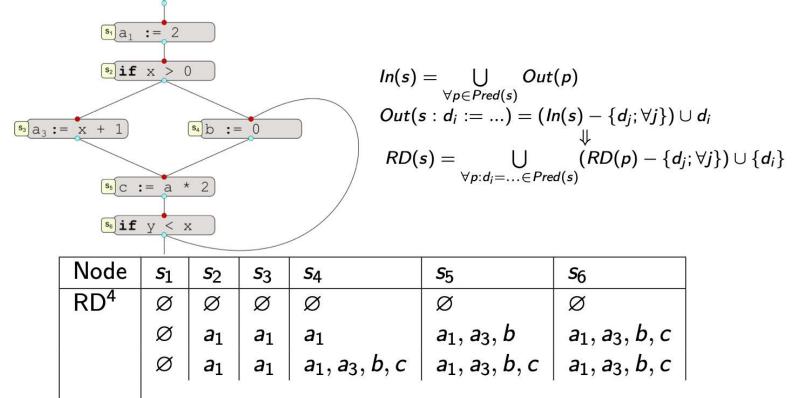


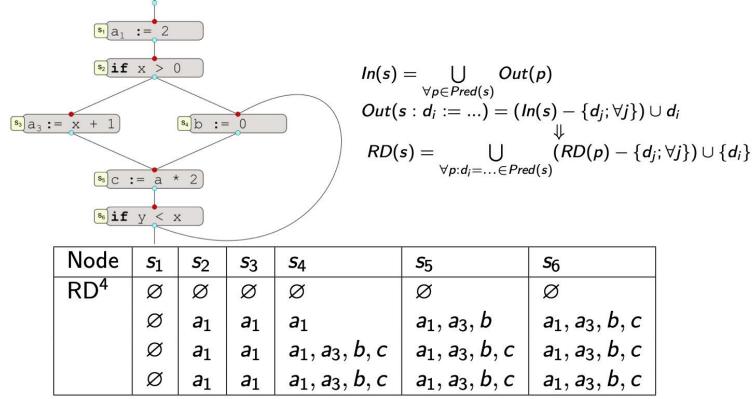












Reaching definitions control flow example - Calculate RD sets?

Reaching definitions control flow example - Calculate RD sets?

Iterative Algorithm *Termination*

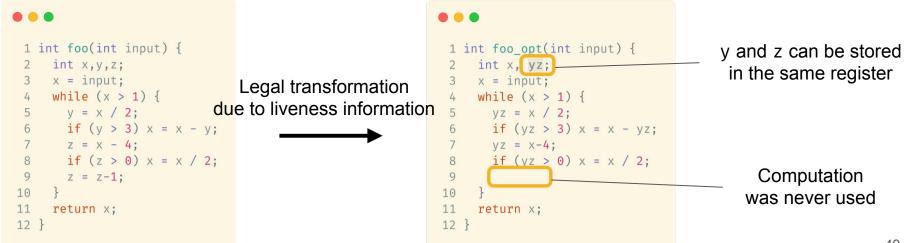
Does the iterative round-robin is guaranteed to terminate?

Iterative Algorithm *Termination*

Does the iterative round-robin is guaranteed to terminate?

Yes!

- Each step of the iteration can only grow a set or leave unchanged
- Finite number of elements in each set, so finite number of times can change
- Each iteration either has a change or stops
- Therefore, must terminate!


Iterative Algorithm: Improving Performance

- Direction (forward vs. backward) can have a big impact on performance
- Round-Robin Algorithm is slow, may require many passes through nodes
- Can speed up by considering basic blocks, rather than individual nodes
- Only nodes which have inputs changed need to be processed, keep track with a work list

Liveness Analysis - What & why?

Intuition: A variable is *live* at a program point if its current value may be read during the remaining execution of the program; otherwise, the variable is *dead*.

Useful for register allocation and dead code elimination

Definition of Liveness

Definition

A variable v is live before a CFG node s if

- 1. $v \in use_{var}(s)$, or
- ∃ a direct path from s to a node that uses v, and that path does not go through a node that defines (overrides) v.

Examples:

Is x life before s = 5? Yes,
$$x \in \{x\} = use_{var}(5)$$

Is z life before s = 5? No, we first hit a def at 8

int foo(int input) { int x,y,z; x = input;while (x > 1) { 5 y = x / 2;if $(y > 3) \rightarrow x = x -$ (6)7 8) z = x - 4;if $(z > 0) \rightarrow x = x / 2; (10)$ (9) z = z - 1;(11)return x;

Backward Dataflow Analysis

- **Direction** backward
- Transfer function computes statement effect

 $ln(s) = f_s(Out(s))$

- Meet operator – merges values from multiple outcoming edges

 $Out(s) = \land_{\forall b \in Succ(s)} In(b)$

- Value set - the information being passed around

e.g. Sets of variables

Initial values

Should be most conservative value; Start node often a special case

Liveness as Dataflow Analysis

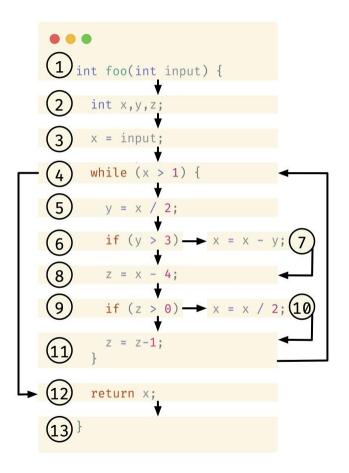
- **Direction** backward
- Transfer function computes statement effect

Out(n) = candidates(n) In(n) = live(n) $f_n(x) = (x - def(n)) \ U \ use(n)$

 $live(n) = (candidates(n) - def_{var}(n)) \cup use_{var}(n)$

- **Meet operator** – merges values from multiple outcoming edges

candidates(n) = ∪ *live*(s) ∀s ∈ *Succ*(n)

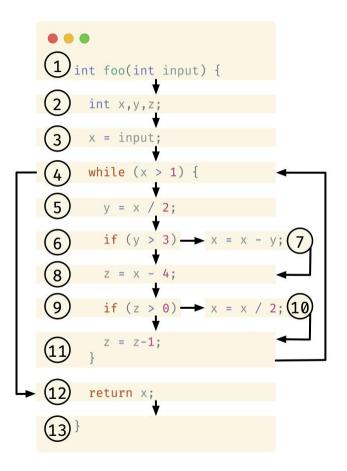

- Value set the information being passed around Set of variables + Set of candidates
- Initial values

Empty sets

			1st	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]
13	{ }	{ }		
12	{x}	{ }		
11	{ z }	{ z }		
10	{ x }	{ x }		
9	{ z }	{ }		
8	{ x }	{ z }		
7	$\{x, y\}$	{ x }		
6	{y}	{ }		
5	{ x }	{y}		
4	{ x }	{ }		
3	{ }	{ x }		
2	{ }	{ }		
1	{ }	{ }		

=
$$\bigcup_{s \in succ(n)} ive[s];$$

live[n]

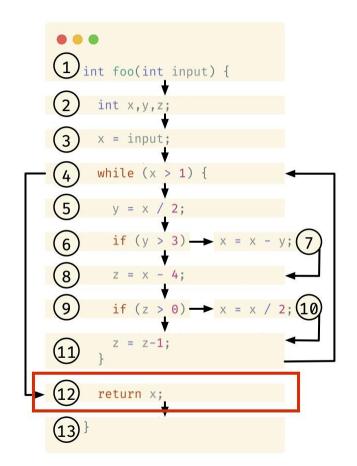

		1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]		
13	{ }	{ }	{ }	{ }		
12	{x}	{ }	{ }	{ }		
11	{ z }	{ z }	{ }	{ }		
10	{x}	{x}	{ }	{ }		
9	{ z }	{ }	{ }	{ }		
8	{x}	{ z }	{ }	{ }		
7	$\{x, y\}$	{x}	{ }	{ }		
6	{y}	{ }	{ }	{ }		
5	{x}	{y}	{ }	{ }		
4	{x}	{ }	{ }	{ }		
3	{ }	{x}	{ }	{ }		
2	{ }	{ }	{ }	{ }		
1	{ }	{ }	{ }	{ }		

=

candidates[n]

live[n]

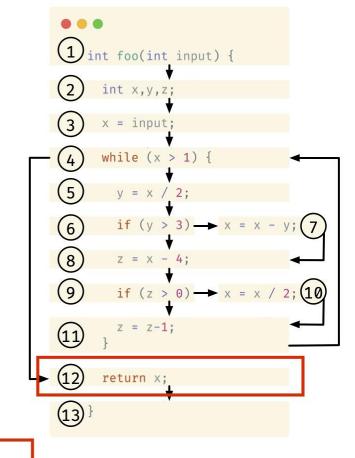
$$\bigcup_{s \in succ(n)} ive[s];$$



			1st	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]
13	{ }	{ }	{ }	/ {}
12	{x}	{ }	0	{ }
11	{ z }	{ z }	{ }	{ }
10	{x}	{x}	{ }	{ }
9	{ z }	{ }	{ }	{ }
8	{x}	{ z }	{ }	{ }
7	$\{x, y\}$	{x}	{ }	{ }
6	{y}	{ }	{ }	{ }
5	{x}	{y}	{ }	{ }
4	{x}	{ }	{ }	{ }
3	{ }	{x}	{ }	{ }
2	{ }	{ }	{ }	{ }
1	{ }	{ }	{ }	{ }

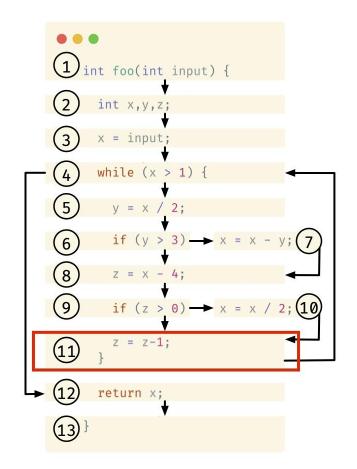
candidates[n]	$= \bigcup_{s \in succ(n)} ive[s]$];
------------------------	------------------------------------	----

live[n]


= **use**var(**n**)∪(candidates[**n**] - **de**fvar(**n**));

			1st	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]
13	{}	15	17	{}
12	{x}	{ }	{}	{x}
11	{ z }	{ z }	{ }	{ }
10	{ x }	{x}	{ }	{ }
9	{ z }	{ }	{ }	{ }
8	{x}	{ z }	{ }	{ }
7	{x,y}	{x}	{ }	{ }
6	{y}	{ }	{ }	{ }
5	{x}	{y}	{ }	{ }
4	{ x }	{ }	{ }	{ }
3	{ }	{x}	{ }	{ }
2	{ }	{ }	{ }	{ }
1	{ }	{ }	{ }	{ }

candidates[n] = $\bigcup_{s \in succ(n)} ive[s];$


live[n]

			1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{}	{ }			
10	{ x }	{x}	{ }	{ }			
9	{ z }	{ }	{}	{ }			
8	{ x }	{ z }	{ }	{ }			
7	$\{x, y\}$	{x}	{ }	{}			
6	{y}	{ }	{ }	{ }			
5	{x}	{y}	{ }	{ }			
4	{x}	{ }	{ }	{ }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

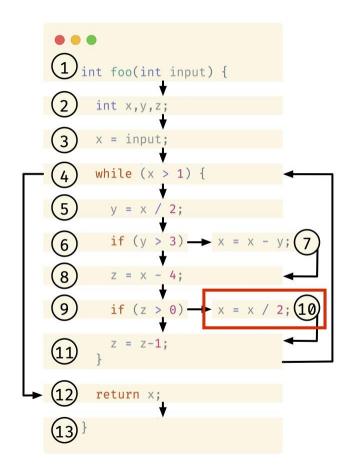
candidates[n]	$= \bigcup_{s \in succ(n)} 1$	jive[s];
------------------------	-------------------------------	----------

live[n]

			1st		
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]	
13	{ }	{ }	{ }	{ }	
12	{x}	13	{}	{ x }	
11	{z}	{ z }		► {z}	
10	{ x }	{ x }	{ }	{ }	
9	{ z }	{ }	{ }	{ }	
8	{ x }	{z}	{ }	{ }	
7	{x,y}	{ x }	{ }	{ }	
6	{y}	{ }	{ }	{ }	
5	{x}	{y}	{ }	{ }	
4	{ x }	{ }	{ }	{ }	
3	{ }	{x}	{ }	{ }	
2	{ }	{ }	{ }	{ }	
1	{ }	{ }	{ }	{ }	

int foo(int input) { int x,y,z; x = input;while (x > 1) { 4 5 y = x / 2; if $(y > 3) \longrightarrow x = x$ y; (7 6 (8)z = x - 4;(9 if $(z > 0) \rightarrow x = x / 2; (10)$ z = z - 1;(11)(12)return x; (13)

live[n]

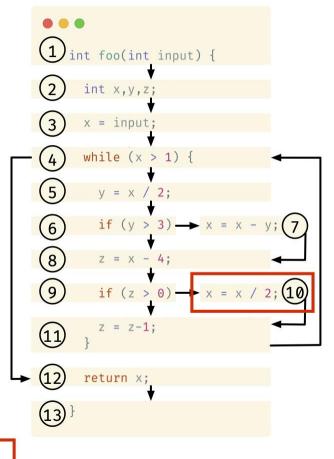

candidates[n]

=
$$\bigcup_{s \in succ(n)} ive[s];$$

			1st	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]
13	{ }	{ }	{ }	{ }
12	{x}	{ }	{ }	{ x }
11	{ z }	{ z }	{ }	/ { z }
10	{x}	{x}	{z}	{ }
9	{ z }	{ }	{ }	{ }
8	{x}	{ z }	{ }	{ }
7	$\{x, y\}$	{x}	{ }	{ }
6	{y}	{ }	{ }	{ }
5	{x}	{y}	{ }	{ }
4	{x}	{ }	{ }	{ }
3	{ }	{x}	{ }	{ }
2	{ }	{ }	{ }	{ }
1	{ }	{ }	{ }	{ }

candidates[n]	$= \bigcup_{s \in succ(n)} i$	ve[s];
------------------------	-------------------------------	----------------

live[n]

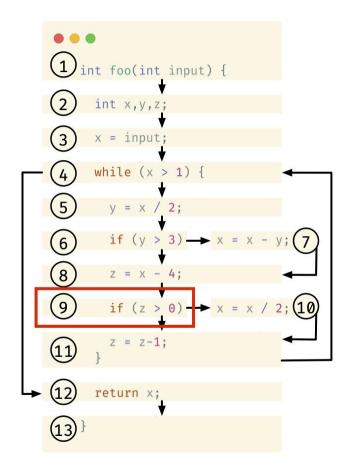


			1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{2}	$\overline{\mathbf{t}}$	{ z }			
10	{x}	{x}	{z}	{ x , z }			
9	{ z }	{ }	{ }	{ }			
8	{ x }	{ z }	{ }	{ }			
7	$\{x, y\}$	{ x }	{ }	{ }			
6	{y}	{ }	{ }	{ }			
5	{x}	{y}	{ }	{ }			
4	{ x }	{ }	{ }	{ }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

candidates[n] =

live[n]

$$\bigcup_{s \in succ(n)} ive[s];$$



		1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]		
13	{ }	{ }	{ }	{ }		
12	{x}	{ }	{ }	{ x }		
11	{ z }	{ z }	{ }	{ z }		
10	{x}	{x}	{ z }	{x,z}		
9	{ z }	{ }	{x,z}	{ }		
8	{ x }	{ z }	{ }	{ }		
7	$\{x, y\}$	{x}	{ }	{ }		
6	{y}	{ }	{ }	{ }		
5	{ x }	{y}	{ }	{ }		
4	{ x }	{ }	{ }	{ }		
3	{ }	{x}	{ }	{ }		
2	{ }	{ }	{ }	{ }		
1	{ }	{ }	{ }	{ }		

candidates[n]	= s∈s	$\bigcup_{ucc(n)} ive[s];$
------------------------	----------	----------------------------

live[n]

= **use**var(**n**)∪(candidates[**n**] - **def**var(**n**));

		1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]		
13	{ }	{ }	{ }	{ }		
12	{x}	{ }	{ }	{ x }		
11	{ z }	{ z }	{ }	{ z }		
10	{x}	{X}	{ Z }	$\{x,z\}$		
9	{ z }	{ }	{x,z}	{ x,z}		
8	{ x }	{z}	{ }	{ }		
7	$\{x, y\}$	{ x }	{ }	{ }		
6	{y}	{ }	{ }	{ }		
5	{ x }	{y}	{ }	{ }		
4	{ x }	{ }	{ }	{ }		
3	{ }	{x}	{ }	{ }		
2	{ }	{ }	{ }	{ }		
1	{ }	{ }	{ }	{ }		

=

 $s \in succ(n)$

while (x > 1) { 4 5 y = x / 2; if $(y > 3) \longrightarrow x = x -$ 6 8 z = x - 4;9 if(z > 0)X = Xz = z - 1;(11)(12)return x; (13)

int foo(int input) {

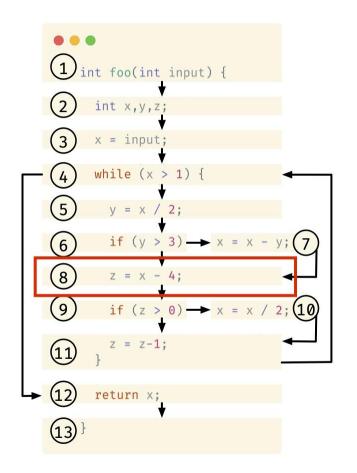
int x,y,z;

x = input;

live[n]

candidates[n]

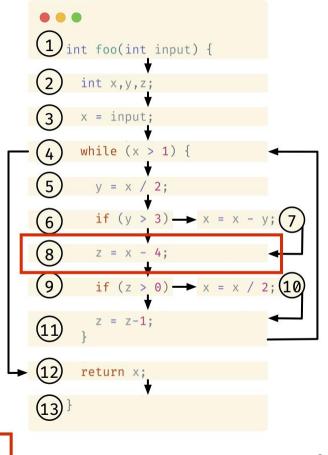
live[s];


7

; (10)

		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ z }			
10	{ x }	{ x }	{ z }	$\{x, z\}$			
9	{ z }	{ }	{x,z}	/{x,z}			
8	{ x }	{ z }	{x,z}	{ }			
7	$\{x, y\}$	{ x }	{ }	{ }			
6	{y}	{ }	{ }	{ }			
5	{x}	{y}	{ }	{ }			
4	{ x }	{ }	{ }	{ }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

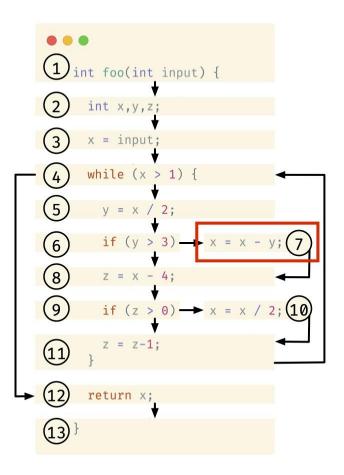
candidates[n]	= s∈s	$\bigcup_{succ(n)}$ live	[s];
------------------------	----------	--------------------------	------



			1st		
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]	
13	{ }	{ }	{ }	{ }	
12	{x}	{ }	{ }	{ x }	
11	{ z }	{ z }	{ }	{ Z }	
10	{ x }	{ x }	{ z }	{x,z}	
9	{ z }	13	{x, z}	$\{x, z\}$	
8	{x}	{z}	{x,z}	→ { x }	
7	$\{x, y\}$	{x}		{ }	
6	{y}	{ }	{ }	{ }	
5	{ x }	{y}	{ }	{ }	
4	{x}	{ }	{ }	{ }	
3	{ }	{x}	{ }	{ }	
2	{ }	{ }	{ }	{ }	
1	{ }	{ }	{ }	{ }	

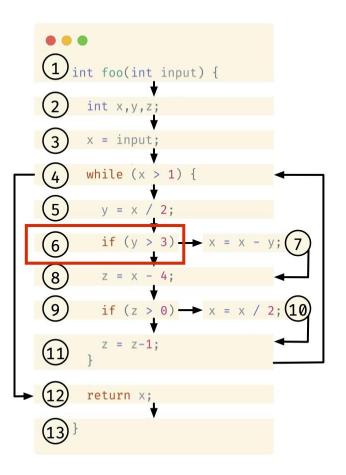
a an candidates[n] =

live[n]


$$\bigcup_{s \in succ(n)} ive[s];$$

		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ z }			
10	{ x }	{x}	{ z }	$\{x, z\}$			
9	{ z }	{ }	{x,z}	$\{x, z\}$			
8	{ x }	{ z }	{x,z}	{ x }			
7	$\{x, y\}$	{x}	{x}	{ x , y }			
6	{y}	{ }	{ }	{ }			
5	{x}	{y}	{ }	{ }			
4	{ x }	{ }	{ }	{ }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

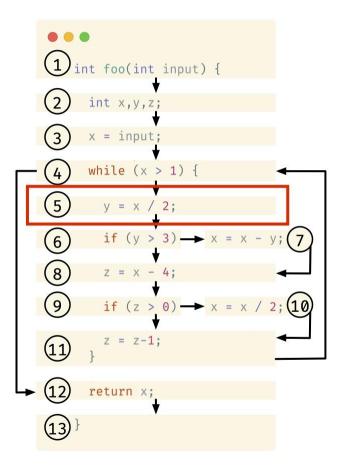
candidates[n]


live[n]

		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ z }			
10	{ x }	{x}	{ z }	{x, z}			
9	{ z }	{ }	{x,z}	{ x , z }			
8	{ x }	{ z }	{x,z}	{ x }			
7	$\{x, y\}$	{x}	{x}	{x,y}			
6	{y}	{ }	{x,y}	{ x , y }			
5	{x}	{y}	{ }	{ }			
4	{ x }	{ }	{ }	{ }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

candidates[n]

live[n]



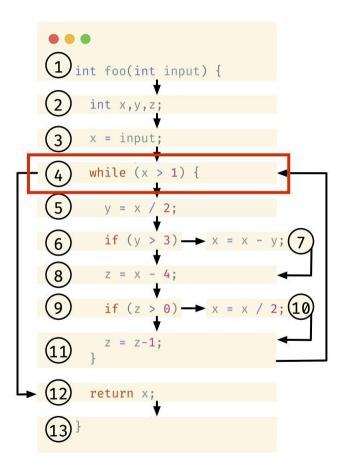
		1st				
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]		
13	{ }	{ }	{ }	{ }		
12	{x}	{ }	{ }	{ x }		
11	{ z }	{ z }	{ }	{ z }		
10	{ x }	{x}	{ z }	{ x , z }		
9	{ z }	{ }	{x,z}	{ x , z }		
8	{ x }	{ z }	{x,z}	{ 🗙 }		
7	$\{x, y\}$	{x}	{ x }	{ x , y }		
6	{y}	{ }	{x,y}	{x,y}		
5	{x}	{y}	{x,y}	{ x }		
4	{ x }	{ }	{ }	{ }		
3	{ }	{x}	{ }	{ }		
2	{ }	{ }	{ }	{ }		
1	{ }	{ }	{ }	{ }		

candidates[n]

live[n]

= use_{var}(n)∪(candidates[n] - def_{var}(n));

		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ Z }			
10	{ x }	{x}	{ z }	{x, z}			
9	{ z }	{ }	{x,z}	{ x , z }			
8	{ x }	{ z }	{x,z}	{ 🗙 }			
7	$\{x, y\}$	{x}	{ x }	{ x , y }			
6	{y}	{ }	{x,y}	$\{x, y\}$			
5	{ x }	{y}	{x,y}	{ x }			
4	{x}	{ }	{ x }	{ x }			
3	{ }	{x}	{ }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			


=

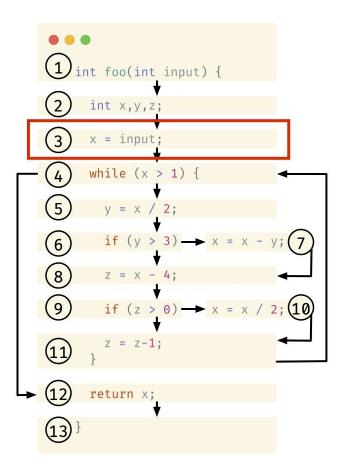
candidates[n]

live[n]

$$\bigcup_{s \in succ(n)} ive[s];$$

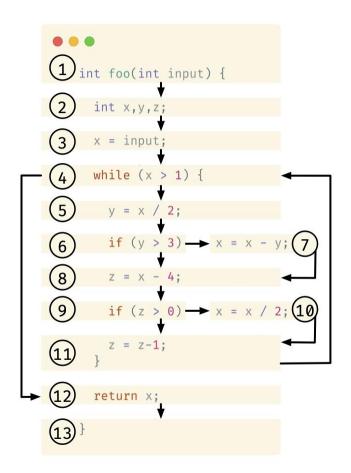
= use_{var}(n)∪(candidates[n] - def_{var}(n));

		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{}			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ z }			
10	{ x }	{x}	{ z }	{x,z}			
9	{ z }	{ }	{x,z}	{ x , z }			
8	{ x }	{ z }	{x,z}	{ x }			
7	$\{x, y\}$	{ x }	{ x }	{ x , y }			
6	{y}	{ }	{x,y}	{x,y}			
5	{ x }	{y}	{x,y}	{ x }			
4	{ x }	{ }	{ x }	{ x }			
3	{ }	{x}	{ x }	{}			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

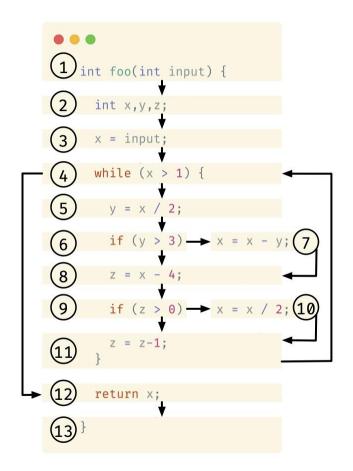

=

candidates[n]

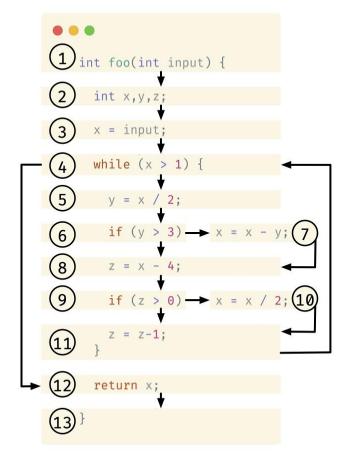
live[n]


$$\bigcup_{s \in succ(n)} ive[s];$$

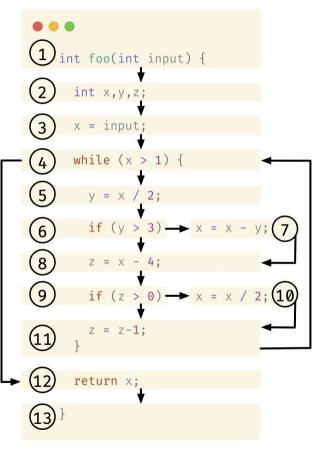
= use_{var}(n)∪(candidates[n] - def_{var}(n));


		1st					
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]			
13	{ }	{ }	{ }	{ }			
12	{x}	{ }	{ }	{ x }			
11	{ z }	{ z }	{ }	{ <mark>z</mark> }			
10	{ x }	{ x }	{ z }	{ x , z }			
9	{ z }	{ }	{x,z}	{ x , z }			
8	{ x }	{ z }	{x,z}	{ 🗙 }			
7	$\{x, y\}$	{ x }	{ x }	{ x , y }			
6	{y}	{ }	{x,y}	{ x , y }			
5	{ x }	{y}	{x,y}	{ <mark>x</mark> }			
4	{ x }	{ }	{ x }	{ x }			
3	{ }	{x}	{ x }	{ }			
2	{ }	{ }	{ }	{ }			
1	{ }	{ }	{ }	{ }			

Completed fist iteration


			1st		2nd	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]	candidate[n]	live[n]
13	{ }	{ }	{ }	{ }	{ }	{ }
12	{ x }	{ }	{ }	{ x }	{ }	{ x }
11	{ z }	{ z }	{ }	{ z }	{ x }	{ x ,z}
10	{ x }	{ x }	{ z }	{x,z}	{x,z}	{x,z}
9	{ z }	{ }	{x,z}	{x,z}	{x,z}	{x,z}
8	{ x }	{ z }	{x,z}	{ x }	{x,z}	{ x }
7	$\{x, y\}$	{ x }	{ x }	{x,y}	{ x }	{x,y}
6	{y}	{ }	{x,y}	{x,y}	{x,y}	{x,y}
5	{ x }	{y}	{x,y}	{ x }	{x,y}	{ x }
4	{ x }	{ }	{ x }	{ x }	{ x }	{ x }
3	{ }	{ x }	{ x }	{ }	{ x }	{ }
2	{ }	{ }	{ }	{ }	{ }	{ }
1	{ }	{ }	{ }	{ }	{ }	{ }

Completed second iteration



			1st		2nd		3rd	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]	candidate[n]	live[n]	candidate[n]	live[n]
13	{ }	{ }	{ }	{ }	{ }	{ }	{ }	{ }
12	{x}	{ }	{ }	{ x }	{ }	{ x }	{ }	{ x }
11	{ z }	{ z }	{ }	{ z }	{x}	{x,z}	{x}	{x,z}
10	{ x }	{ x }	{ z }	{x,z}	{x,z}	{x,z}	{x,z}	{x,z}
9	{ z }	{ }	{x,z}	{x,z}	{x,z}	{x,z}	{x,z}	{x,z}
8	{x}	{ z }	{x,z}	{ x }	{x,z}	{ x }	{x,z}	{ x }
7	$\{x, y\}$	{ x }	{ x }	{x,y}	{x}	{x,y}	{x}	{x,y}
6	{y}	{ }	{x,y}	{x,y}	{x,y}	{x,y}	{x,y}	{x,y}
5	{ x }	{y}	{x,y}	{ x }	{x,y}	{x}	{x,y}	{ x }
4	{ x }	{ }	{ x }	{ x }	{ x }	{ x }	{ x }	{ x }
3	{ }	{x}	{ x }	{ }	{ x }	{ }	{ x }	{ }
2	{ }	{ }	{ }	{ }	{ }	{ }	{ }	{ }
1	{ }	{ }	{ }	{ }	{ }	{ }	{ }	{ }

No changes: fixpoint reached

			1st		2nd		3rd	
Node n	use _{var} (n)	def _{var} (n)	candidate[n]	live[n]	candidate[n]	live[n]	candidate[n]	live[n]
13	{ }	{ }	{ }	{ }	{ }	{ }	{ }	{ }
12	{x}	{ }	{ }	{ x }	{ }	{ x }	{ }	{x}
11	{ z }	{ z }	{ }	{ z }	{ x }	{x,z}	{ x }	{x,z
10	{ x }	{ x }	{ z }	{x,z}	{x,z}	{x,z}	{x,z}	{x z
9	{ z }	{ }	{x,z}	{x,z}	{x,z}	{x,z}	{x,z}	{ x ,z
8	{x}	{z}	{x,z}	{ x }	{x,z}	{ x }	{x,z}	{x}
7	{x,y}	{x}	{ x }	{x,y}	{ x }	{x,y}	{ x }	(x,y
6	{y}	{ }	{x,y}	{x,y}	{x,y}	{x,y}	{x,y}	{x y
5	{x}	{y}	{x,y}	{ x }	{x,y}	{ x }	{x,y}	x }
4	{ x }	{ }	{ x }	{ x }	{ x }	{ x }	{x}	{ x }
3	{ }	{x}	{ x }	{ }	{ x }	{ }	{x}	{}
2	{ }	{ }	{ }	{ }	{ }	{ }	{}	{}
1	{ }	{ }	{ }	{ }	{ }	{ }	{}	{ }

No changes: fixpoint reached

y and z are never live together

Data flow Analysis *Limitations*

Data flow analysis has some limitations:

- Static analysis may be (very) conservative
- CFG is only a static approximation of the dynamic control flow
- Pointers introduce aliases:
 - E.g. *x = 10; Does x point to another variable, y or z?
 That would give a definition of y or z. May not know at compile time which ...
 - Precise alias analysis still an open problem
- Array access; generally cannot tell which indices are used
- Reasoning across function calls ...