
Compiling Techniques
Lecture 17: Register Allocation

Overview

2

Errors

FrontEnd Middle
End

AST IR IR

Backend

ASM

ChocoPy RISC-V

Register Allocation

3

Errors

Instruction
Selection

Register
Allocation

AST IR IR

Instruction
Scheduling

ASM

ChocoPy RISC-V

Introduction

4

This lecture:

● Local Allocation - spill code
● Global Allocation based on graph colouring
● Techniques to reduce spill code

Register Allocation

● Physical machines have limited number of registers
● Scheduling and selection typically assume infinite registers
● Register allocation and assignment from infinite to k registers

5

● Produce correct code that uses k (or fewer) registers
● Minimise added loads and stores
● Minimise space used to hold spilled values
● Operate efficiently:

○ O(n), O(n²), but not O(2ⁿ)

Register Allocation: Definitions

Allocation vs Assignment:
● Allocation is deciding which values to keep in registers
● Assignment is choosing specific registers for values

Liveness
A value is live from its definition to its last use.

Interference
Two values cannot be mapped to the same register wherever they are both live. Such values
are said to interfere.

Live Range
The live range of a value is the set of statements at which it is live. A live range may be
conservatively overestimated (e.g, just begin → end)

6

Register Allocation: Definitions

Spilling
Spilling saves a value from a register to memory.
That register is then free - Another value often loaded
Requires 𝑭 registers to be reserved.

Clean and dirty values
A previously spilled value is clean if not changed since last spill.
Otherwise it is dirty.
A clean value can be spilled without a new store instruction.

7

Local Register Allocation

Register allocation only on basic block.

Let MAXLIVE be the maximum, over each instruction i in the block, of the number
of values (pseudo-registers) live at i.

● If MAXLIVE ≤ k, allocation should be easy
● If MAXLIVE ≤ k, no need to reserve F registers for spilling
● If MAXLIVE > k, some values must be spilled to memory
● If MAXLIVE > k, need to reserve F registers for spilling

Two main forms:

● Top down
● Bottom up

8

Local Register Allocation: MAXLIVE

9

Example MAXLIVE computation
Live registers

Local Register Allocation: MAXLIVE

10

Example MAXLIVE computation
MAXLIVE is 4

Local Register Allocation: MAXLIVE

11

Local register allocation: Top Down

Algorithm:
● If number of values > k

● Rank values by occurrences
● Allocate first k - F values to registers
● Spill other values

12

Example top down
Usage counts

Local register allocation: top down

13

Local register allocation: Top Down

14

Example top down
Spill code inserted

Local Register Allocation: Top down

15

Example top down
Register assignment straightforward

Local register allocation: Top Down

16

Local register allocation: Bottom Up

Algorithm:
● Start with empty register set
● Load on demand
● When no register is available, free one

Replacement:
● Spill the value whose next use is farthest in the future
● Prefer clean value to dirty value

17

Local register allocation: Bottom Up

18

Example bottom up
Spill code inserted

Local register allocation: Bottom Up

19

Global register allocation

Local allocation does not capture reuse of values across multiple
blocks
Most modern, global allocators use a graph-colouring paradigm

Build a “conflict graph” or “interference graph”
Data flow based liveness analysis for interference

Find a k-colouring for the graph, or change the code to a
nearby problem that it can k-colour
NP-complete under nearly all assumptions1

1Local allocation is NP-complete with dirty vs clean
20

Global register allocation: algorithm sketch

● From live ranges construct an interference graph
● Colour interference graph so that no two neighbouring

nodes have same colour
● If graph needs more than k colours - transform code

○ Coalesce merge-able copies
○ Split live ranges
○ Spill

● Colouring is NP-complete so we will need heuristics
● Map colours onto physical registers

21

Global register allocation: Graph Coloring

Definition
A graph G is said to be k-colourable if the nodes can be labeled
with integers 1 ... k so that no edge in G connects two nodes with
the same label

Examples

22

Global register allocation: Interference Graph

The interference graph, G = (N, E)
● Nodes in G represent values, or live ranges
● Edges in G represent individual interferences
● ∀x, y ∈ N, x → y ∈ E iff x and y interfere
A k-colouring of G can be mapped into an allocation to k registers

Two values interfere wherever they are both live
Two live ranges interfere if their values interfere at any point

23

Global register allocation: Coloring the Register Graph

24

● Degree³ of a node (n°) is a loose upper bound on colourability
● Any node, n, such that n° < k is always trivially k-colourable

○ Trivially colourable nodes cannot adversely affect the colourability of neighbours
○ Can remove them from graph
○ Reduces degree of neighbours - may be trivially colourable

● If left with any nodes such that n° ≥ k spill one
○ Reduces degree of neighbours - may be trivially colourable

Global register allocation: Chaitin’s Algorithm

25

1. While ∃ vertices with < k neighbours in G
○ Pick any vertex n such that n° < k and put it on the stack
○ Remove n and all edges incident to it from G

2. If G is non-empty (n° >= k, ∃ n ∋ G) then:
○ Pick vertex n (heuristic), spill live range of n
○ Remove vertex n and edges from GI, put n on “spill list”
○ Goto step 1

3. If the spill list is not empty, insert spill code, then rebuild the interference
graph and try to allocate, again

4. Otherwise, successively pop vertices of the stack and colour them in the
lowest colour not used by some neighbour

Global Register Allocation: Chaitin’s Algorithm

26

a d

c

b

Stack Colours

r2

r3

e
r1

Colour with k = 3
colours

Global Register Allocation: Chaitin’s Algorithm

27

a d

c

b

Stack Colours

r2

r3

e
r1

a° = 2 < k Choose a

Global Register Allocation: Chaitin’s Algorithm

28Stack Colours

r2

r3

r1

Push a and remove
from graph

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

29Stack Colours

r2

r3

r1

b° = 2 < k and
c° = 2 < k
Choose b

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

30Stack Colours

r2

r3

r1

Push b and remove
from graph

a

d

c
b

e

Global Register Allocation: Chaitin’s Algorithm

31Stack Colours

r2

r3

r1

c° = 2 < k,
d° = 2 < k, and
e° = 2 < k
Choose c

a

d

c
b

e

Global Register Allocation: Chaitin’s Algorithm

32Stack Colours

r2

r3

r1

Push c and remove
from graph

a

d c

b

e

Global Register Allocation: Chaitin’s Algorithm

33Stack Colours

r2

r3

r1

d° = 1 < k and
e° = 1 < k
Choose d

a

d c

b

e

Global Register Allocation: Chaitin’s Algorithm

34Stack Colours

r2

r3

r1

Push d and remove
from graph

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

35Stack Colours

r2

r3

r1

e° = 0 < k Choose e

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

36Stack Colours

r2

r3

r1

Push e and remove
from graph

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

37Stack Colours

r2

r3

r1

Pop e, neighbours
use no colours,
choose red

a

d

c

b

e

Global Register Allocation: Chaitin’s Algorithm

38Stack Colours

r2

r3

r1

Pop d, neighbours
use red, choose blue

a

c

b

e d

Global Register Allocation: Chaitin’s Algorithm

39Stack Colours

r2

r3

r1

Pop c, neighbours
use red and blue
choose green

a

b

e d

c

Global Register Allocation: Chaitin’s Algorithm

40Stack Colours

r2

r3

r1

Pop c, neighbours
use red and blue
choose green

a

e d

c

b

Global Register Allocation: Chaitin’s Algorithm

41Stack Colours

r2

r3

r1

Pop a, neighbours
use blue choose red

e d

c

b

a

Global Register Allocation: Optimistic Colouring

If Chaitin's algorithm reaches a state where every node has k or more
neighbours, it chooses a node to spill.

Example of Chaitin overzealous spilling
k = 2

Graph is 2-colourable
Chaitin must immediately spill one of these nodes

Briggs said, take that same node and push it on the stack! When
you pop it off, a colour might be available for it! Chaitin-Briggs
algorithm uses this to colour that graph

42

a d

c

b

Global register allocation: Chaitin-Briggs algorithm

43

● While ∃ vertices with < k neighbours in G
○ Pick any vertex n such that n° < k and put it on the stack
○ Remove n and all edges incident to it from GI

● If G is non-empty (n° >= k, ∀n ∈ G) then:
○ Pick vertex n (heuristic) (Do not spill)
○ Remove vertex n from GI, put n on stack (Not spill list)
○ Goto step 1

● Otherwise, successively pop vertices off the stack and colour them in the
lowest colour not used by some neighbour

○ If some vertex cannot be coloured, then pick an uncoloured vertex to spill, spill it, and restart
at step 1

Global Register Allocation: Chaitin-Briggs Algorithm

44

a d

c

b

Stack Colours

r1

r2

Global Register Allocation: Chaitin-Briggs Algorithm

45

a d

c

b

Stack Colours

r1

r2

a° = 2 ≥ k
Don’t Spill, Choose a!

Global Register Allocation: Chaitin-Briggs Algorithm

46

d

c

b

Stack Colours

r1

r2

Push a and remove
the graph!

a

Global Register Allocation: Chaitin-Briggs Algorithm

47

d

c

b

Stack Colours

r1

r2

b° = 1 < k and
c° = 1 < k
Choose b

a

Global Register Allocation: Chaitin-Briggs Algorithm

48

d

c

Stack Colours

r1

r2

c° = 1 < k,
and d° = 1 < k
Choose c

a

b

Global Register Allocation: Chaitin-Briggs Algorithm

49

d

Stack Colours

r1

r2

Push c and remove
from graph

a

b

c

Global Register Allocation: Chaitin-Briggs Algorithm

50

d

Stack Colours

r1

r2

d° = 1 < k Choose d

a

b

c

Global Register Allocation: Chaitin-Briggs Algorithm

51Stack Colours

r1

r2

Push d and remove
from graph

a

b

c

d

Global Register Allocation: Chaitin-Briggs Algorithm

52Stack Colours

r1

r2

Pop d, neighbours
use no colours,
choose blue

a

b

c
d

Global Register Allocation: Chaitin-Briggs Algorithm

53Stack Colours

r1

r2

Pop c, neighbours
use blue choose
green

a

b
d

c

Global Register Allocation: Chaitin-Briggs Algorithm

54Stack Colours

r1

r2

Pop b, neighbours
use blue choose
green

a

d

c

b

Global Register Allocation: Chaitin-Briggs Algorithm

55Stack Colours

r1

r2

Pop a, neighbours
use green choose
blue

d

c

b

a

Global register allocation: Spill Candidates

● Minimise spill cost/degree
● Spill cost is the loads and stores needed. Weighted by

scope - i.e. avoid inner loops
● The higher the degree of a node to spill the greater the

chance that it will help colouring
● Negative spill cost load and store to same memory location

with no other uses
● Infinite cost - definition immediately followed by use.

Spilling does not decrease live range

56

● Splitting live ranges
● Coalesce

Global Register Allocation: Alternative Spilling

57

Global Register Allocation: Live Range Splitting

● A whole live range may have many interferences, but
perhaps not all at the same time

● Split live range into two variables connected by copy
● Can reduce degree of interference graph
● Smart splitting allows spilling to occur in “cheap” regions

58

Global register allocation

Splitting example: Non contiguous live ranges - cannot be 2 coloured

59

Global Register Allocation: Live Range Splitting

60

Splitting example: Non contiguous live ranges - can be 2 coloured

Global register allocation: Coalescing
If two ranges don’t interfere and are connected by a copy coalesce into one – opposite of
splitting. Reduces degree of nodes that interfered with both

If x := y and x → y ∈ GI then can combine LRx and LRy
● Eliminates the copy operation
● Reduces degree of LRs that interfere with both x and y
● If a node interfered with both before, coalescing helps
● As it reduces degree, often applied before colouring takes place

61

Global register allocation: Coalescing

Coalescing can make the graph harder to color

● Typically, LRxy ° > max (LRx °, LRy °)
● If max (LRx °, LRy °) < k and k < LRxy ° then LRxy might spill, while LRx and

LRy would not spill

62

Global register allocation: Coalescing

Observation led to conservative coalescing

1. Conceptually, coalesce x and y iff x → y ∈ GI and LRxy ° < k
2. We can do better

○ Coalesce LRx and LRy iff LRxy has < k neighbours with degree > k
○ Only neighbours of “significant degree” can force LRxy to spill

3. Always safe to perform coalesce
○ Cannot introduce a node of non-trivial degree
○ Cannot introduce a new spill

63

Global register allocation: Other Approaches

● Top-down uses high level priorities to decide on colouring
● Hierarchical approaches - use control flow structure to

guide allocation
● Exhaustive allocation - go through combinatorial options -

very expensive but occasional improvement
● Re-materialisation - if easy to recreate a value do so

rather than spill
● Passive splitting using a containment graph to make spills

effective
● Linear scan - fast but weak; useful for JITs

64

Global register allocation: Ongoing work

● Eisenbeis et al examining optimality of combined reg alloc
and scheduling. Difficulty with general control-flow

● Partitioned register sets complicate matters. Allocation can
require insertion of code which in turn affects allocation.

● Leupers investigated use of genetic algs for TM series
partitioned reg sets.

● New work by Fabrice Rastello and others. Chordal graphs
reduce complexity

● As latency increases see work in combined code
generation, instruction scheduling and register allocation

65

● Local Allocation - spill code
● Global Allocation based on graph colouring
● Techniques to reduce spill code

Summary

66

