Compiling Techniques

Lecture 17: Register Allocation
Overview

ChocoPy → FrontEnd → Middle End → Backend → RISC-V

AST → IR → IR → ASM

Errors
Register Allocation

ChocoPy → Instruction Selection → Register Allocation → Instruction Scheduling → ASM → RISC-V

AST → IR → IR → Errors
Introduction

This lecture:

- Local Allocation - spill code
- Global Allocation based on graph colouring
- Techniques to reduce spill code
Register Allocation

- Physical machines have limited number of registers
- Scheduling and selection typically assume infinite registers
- Register allocation and assignment from infinite to k registers

- Produce correct code that uses k (or fewer) registers
- Minimise added loads and stores
- Minimise space used to hold spilled values
- Operate efficiently:
 - $O(n)$, $O(n^2)$, but not $O(2^n)$
Register Allocation: Definitions

Allocation vs Assignment:
- *Allocation* is deciding which values to keep in registers
- *Assignment* is choosing specific registers for values

Liveness
A value is live from its definition to its last use.

Interference
Two values cannot be mapped to the same register wherever they are both live. Such values are said to interfere.

Live Range
The live range of a value is the set of statements at which it is live. A live range may be conservatively overestimated (e.g., just begin → end)
Register Allocation: Definitions

Spilling
Spilling saves a value from a register to memory. That register is then free - Another value often loaded Requires F registers to be reserved.

Clean and dirty values
A previously spilled value is clean if not changed since last spill. Otherwise it is dirty.
A clean value can be spilled without a new store instruction.
Local Register Allocation

Register allocation only on basic block.

Let MAXLIVE be the maximum, over each instruction i in the block, of the number of values (pseudo-registers) live at i.

- If \(\text{MAXLIVE} \leq k \), allocation should be easy
- If \(\text{MAXLIVE} \leq k \), no need to reserve F registers for spilling
- If \(\text{MAXLIVE} > k \), some values must be spilled to memory
- If \(\text{MAXLIVE} > k \), need to reserve F registers for spilling

Two main forms:
- Top down
- Bottom up
Local Register Allocation: MAXLIVE

loadI 1028 \rightarrow r_a \quad \text{// } r_a \leftarrow 1028
load r_a \rightarrow r_b \quad \text{// } r_b \leftarrow \text{MEM}(r_a)
mult r_a, r_b \rightarrow r_c \quad \text{// } r_c \leftarrow 1028 \cdot y
load x \rightarrow r_d \quad \text{// } r_d \leftarrow x
sub r_d, r_b \rightarrow r_e \quad \text{// } r_e \leftarrow x-y
load z \rightarrow r_f \quad \text{// } r_f \leftarrow z
mult r_e, r_f \rightarrow r_g \quad \text{// } r_g \leftarrow z \cdot (x-y)
sub r_g, r_c \rightarrow r_h \quad \text{// } r_h \leftarrow z \cdot (x-y) - 1028 \cdot y
store r_h \rightarrow r_a \quad \text{// } \text{MEM}(r_a) \leftarrow z \cdot (x-y) - 1028 \cdot y
Local Register Allocation: MAXLIVE

Example MAXLIVE computation

Live registers

\[
\begin{align*}
\text{loadI} & \ 1028 \Rightarrow r_a \quad // \quad r_a \\
\text{load} & \ r_a \Rightarrow r_b \quad // \quad r_a \ r_b \\
\text{mult} & \ r_a, r_b \Rightarrow r_c \quad // \quad r_a \ r_b \ r_c \\
\text{load} & \ x \Rightarrow r_d \quad // \quad r_a \ r_b \ r_c \ r_d \\
\text{sub} & \ r_d, r_b \Rightarrow r_e \quad // \quad r_a \ r_c \ r_e \\
\text{load} & \ z \Rightarrow r_f \quad // \quad r_a \ r_c \ r_e \ r_f \\
\text{mult} & \ r_e, r_f \Rightarrow r_g \quad // \quad r_a \ r_c \ r_g \\
\text{sub} & \ r_g, r_c \Rightarrow r_h \quad // \quad r_a \ r_h \\
\text{store} & \ r_h \Rightarrow r_a \quad //
\end{align*}
\]
Local Register Allocation: MAXLIVE

Example MAXLIVE computation

MAXLIVE is 4
Local register allocation: Top Down

Algorithm:

- If number of values $> k$
 - Rank values by occurrences
 - Allocate first $k - F$ values to registers
 - Spill other values
Local register allocation: top down

Example top down

Usage counts

```
loadI 1028  \Rightarrow r_a  // r_a
load r_a  \Rightarrow r_b  // r_a  r_b
mult r_a, r_b  \Rightarrow r_c  // r_a  r_b  r_c
load x  \Rightarrow r_d  // r_a  r_b  r_c  r_d
sub r_d, r_b  \Rightarrow r_e  // r_a  r_c  r_e
load z  \Rightarrow r_f  // r_a  r_c  r_e  r_f
mult r_e, r_f  \Rightarrow r_g  // r_a  r_c  r_g
sub r_g, r_c  \Rightarrow r_h  // r_a  r_h
store r_h  \Rightarrow r_a  //
```

Counts

- \(r_a = 4 \)
- \(r_b = 3 \)
- \(r_c = 2 \)
- \(r_d = 2 \)
- \(r_e = 2 \)
- \(r_f = 2 \)
- \(r_g = 2 \)
- \(r_h = 2 \)
Local register allocation: Top Down

```
loadI 1028  =>  r_a  //  r_a
load  r_a   =>  r_b  //  r_a  r_b
mult  r_a,  r_b  =>  r_c  //  r_a  r_b  r_c
load  x      =>  r_d  //  r_a  r_b  r_c  r_d
sub   r_d,  r_b  =>  r_e  //  r_a  r_c  r_e
load  z      =>  r_f  //  r_a  r_c  r_e  r_f
mult  r_e,  r_f  =>  r_g  //  r_a  r_c  r_g
sub   r_g,  r_c  =>  r_h  //  r_a  r_c  r_h
store r_h    =>  r_a  //
```

Counts
- r_a = 4
- r_b = 3
- r_c = 2
- r_d = 2
- r_e = 2
- r_f = 2
- r_g = 2
- r_h = 2

Must have r_d
- r_c < r_a, r_b

Spill r_c

Restore r_c

r_c

r_g

r_h
Local Register Allocation: Top down

Example top down

Spill code inserted

\[\begin{align*}
\text{loadI} & \quad 1028 \\
\text{load} & \quad r_a \\
\text{mult} & \quad r_a, r_b \\
\text{store} & \quad r_c \\
\text{load} & \quad x \\
\text{sub} & \quad r_d, r_b \\
\text{load} & \quad z \\
\text{mult} & \quad r_e, r_f \\
\text{load} & \quad r_{arp}, \text{spill}_c \\
\text{sub} & \quad r_f, r_c \\
\text{store} & \quad r_h \\
\end{align*}\]
Local register allocation: Top Down

Example top down
Register assignment straightforward

```
loadI 1028                  r1
load r1                     r2
mult r1, r2                 r3
store r3                     => r_{arp, spill_c}
load x                      r3
sub r3, r2                  r2
load z                      r3
mult r2, r3                 r2
load r_{arp, spill_c}       r3
sub r2, r3                  r2
store r2                     => r1
```
Local register allocation: Bottom Up

Algorithm:
- Start with empty register set
- Load on demand
- When no register is available, free one

Replacement:
- Spill the value whose next use is farthest in the future
- Prefer clean value to dirty value
Local register allocation: Bottom Up

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>loadI 1028</td>
<td></td>
<td>r_a</td>
</tr>
<tr>
<td>load r_a</td>
<td></td>
<td>r_b</td>
</tr>
<tr>
<td>mult r_a, r_b</td>
<td></td>
<td>r_c</td>
</tr>
<tr>
<td>load x</td>
<td></td>
<td>r_d</td>
</tr>
<tr>
<td>sub r_d, r_b</td>
<td></td>
<td>r_e</td>
</tr>
<tr>
<td>load z</td>
<td></td>
<td>r_f</td>
</tr>
<tr>
<td>mult r_e, r_f</td>
<td></td>
<td>r_g</td>
</tr>
<tr>
<td>sub r_g, r_c</td>
<td></td>
<td>r_h</td>
</tr>
</tbody>
</table>

// r_a r_b r_c r_d r_e r_f r_g r_h

r_a used
latest

Spill r_a

Restore r_a r_h
Local register allocation: Bottom Up

Example bottom up

Spill code inserted

```
loadI 1028           ra
load    ra           rb
mult    ra, rb       rc
store   ra           rarp, spill_a
load    x            rd
sub     rd, rb       re
load    z            rf
mult    re, rf       rg
sub     rf, rc       rh
load    rarp, spill_a ra
store   rh           ra
```
Global register allocation

Local allocation does not capture reuse of values across multiple blocks
Most modern, global allocators use a graph-colouring paradigm

Build a “conflict graph” or “interference graph”

Data flow based liveness analysis for interference

Find a k-colouring for the graph, or change the code to a nearby problem that it can k-colour

NP-complete under nearly all assumptions\(^1\)

\(^1\) Local allocation is NP-complete with dirty vs clean
Global register allocation: algorithm sketch

- From live ranges construct an interference graph
- Colour interference graph so that no two neighbouring nodes have same colour
- If graph needs more than k colours - transform code
 - Coalesce merge-able copies
 - Split live ranges
 - Spill
- Colouring is NP-complete so we will need heuristics
- Map colours onto physical registers
Global register allocation: Graph Coloring

A graph G is said to be **k-colourable** if the nodes can be labeled with integers $1 \ldots k$ so that no edge in G connects two nodes with the same label.

![Diagram showing 2-colourable and 3-colourable graphs](image)

2-colourable

3-colourable
Global register allocation: Interference Graph

The interference graph, $G = (N, E)$

- Nodes in G represent values, or live ranges
- Edges in G represent individual interferences
- $\forall x, y \in N, x \rightarrow y \in E$ iff x and y interfere

A k-colouring of G can be mapped into an allocation to k registers

Two values interfere wherever they are both live.
Two live ranges interfere if their values interfere at any point.
Global register allocation: Coloring the Register Graph

- Degree³ of a node (n°) is a loose upper bound on colourability
- Any node, n, such that n° < k is always trivially k-colourable
 - Trivially colourable nodes cannot adversely affect the colourability of neighbours
 - Can remove them from graph
 - Reduces degree of neighbours - may be trivially colourable
- If left with any nodes such that n° ≥ k spill one
 - Reduces degree of neighbours - may be trivially colourable
Global register allocation: Chaitin’s Algorithm

1. While \exists vertices with $< k$ neighbours in G
 ○ Pick any vertex n such that $n^\circ < k$ and put it on the stack
 ○ Remove n and all edges incident to it from G

2. If G is non-empty ($n^\circ \geq k$, $\exists\ n \ni G$) then:
 ○ Pick vertex n (heuristic), spill live range of n
 ○ Remove vertex n and edges from GI, put n on “spill list”
 ○ Goto step 1

3. If the spill list is not empty, insert spill code, then rebuild the interference graph and try to allocate, again

4. Otherwise, successively pop vertices of the stack and colour them in the lowest colour not used by some neighbour
Global Register Allocation: Chaitin’s Algorithm

Colour with $k = 3$ colours

Colours:
- $r1$
- $r2$
- $r3$
Global Register Allocation: Chaitin’s Algorithm

\[a^\circ = 2 < k \text{ Choose } a \]
Global Register Allocation: Chaitin’s Algorithm

Push a and remove from graph

Stack

Colours

r1
r2
r3
Global Register Allocation: Chaitin’s Algorithm

\[b^\circ = 2 < k \text{ and } c^\circ = 2 < k \]
Choose \(b \)
Global Register Allocation: Chaitin’s Algorithm

Stack

Colours

Push b and remove from graph

r1

r2

r3
Global Register Allocation: Chaitin’s Algorithm

c° = 2 < k,
d° = 2 < k, and
e° = 2 < k
Choose c
Global Register Allocation: Chaitin’s Algorithm

Push c and remove from graph
Global Register Allocation: Chaitin’s Algorithm

d° = 1 < k and e° = 1 < k
Choose d
Global Register Allocation: Chaitin’s Algorithm

Stack

Colours

Push d and remove from graph

e

r1
r2
r3
Global Register Allocation: Chaitin’s Algorithm

\[e^o = 0 < k \text{ Choose } e \]
Global Register Allocation: Chaitin’s Algorithm

```
Stack
a
b
c
d
e
```

Colours

- r1
- r2
- r3

Push e and remove from graph
Global Register Allocation: Chaitin’s Algorithm

Pop e, neighbours use no colours, choose red
Global Register Allocation: Chaitin’s Algorithm

Pop d, neighbours use red, choose blue
Global Register Allocation: Chaitin’s Algorithm

Pop c, neighbours use red and blue choose green
Global Register Allocation: Chaitin’s Algorithm

Pop c, neighbours use red and blue choose green
Global Register Allocation: Chaitin’s Algorithm

Pop a, neighbours use blue choose red

Stack

Colours

r1
r2
r3
Global Register Allocation: Optimistic Colouring

If Chaitin's algorithm reaches a state where every node has k or more neighbours, it chooses a node to spill.

Example of Chaitin overzealous spilling

$k = 2$

Graph is 2-colourable

Chaitin must immediately spill one of these nodes

Briggs said, take that same node and push it on the stack! When you pop it off, a colour might be available for it! Chaitin-Briggs algorithm uses this to colour that graph.
Global register allocation: Chaitin-Briggs algorithm

- While \exists vertices with $< k$ neighbours in G
 - Pick any vertex n such that $n^\circ < k$ and put it on the stack
 - Remove n and all edges incident to it from G_I
- If G is non-empty ($n^\circ \geq k$, $\forall n \in G$) then:
 - Pick vertex n (heuristic) (Do not spill)
 - Remove vertex n from G_I, put n on stack (Not spill list)
 - Goto step 1
- Otherwise, successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour
 - If some vertex cannot be coloured, then pick an uncoloured vertex to spill, spill it, and restart at step 1
Global Register Allocation: Chaitin-Briggs Algorithm

Stack

Colours

r1

r2
Global Register Allocation: Chaitin-Briggs Algorithm

\[a° = 2 \geq k \]

Don’t Spill, Choose a!
Global Register Allocation: Chaitin-Briggs Algorithm

- Stack
- Colours
- Push a and remove the graph!

Graph nodes: b, c, d

Colours: r1, r2
Global Register Allocation: Chaitin-Briggs Algorithm

\[b^\circ = 1 < k \text{ and } c^\circ = 1 < k \]

Choose \(b \)
Global Register Allocation: Chaitin-Briggs Algorithm

c° = 1 < k, and d° = 1 < k
Choose c
Global Register Allocation: Chaitin-Briggs Algorithm

Stack:
- d
- c
- b
- a

Colours:
- r1
- r2

Push c and remove from graph
Global Register Allocation: Chaitin-Briggs Algorithm

d° = 1 < k Choose d

Stack

Colours

r1

r2
Global Register Allocation: Chaitin-Briggs Algorithm

Push d and remove from graph

Stack: a, b, c, d

Colours: r1, r2
Global Register Allocation: Chaitin-Briggs Algorithm

Pop d, neighbours use no colours, choose blue
Global Register Allocation: Chaitin-Briggs Algorithm

Pop c, neighbours use blue choose green
Global Register Allocation: Chaitin-Briggs Algorithm

Pop b, neighbours use blue choose green
Global Register Allocation: Chaitin-Briggs Algorithm

Pop a, neighbours use green choose blue

a — b — c — d

Stack

r1
r2

Colours
Global register allocation: Spill Candidates

- Minimise spill cost/degree
- Spill cost is the loads and stores needed. Weighted by scope - i.e. avoid inner loops
- The higher the degree of a node to spill the greater the chance that it will help colouring
- Negative spill cost load and store to same memory location with no other uses
- Infinite cost - definition immediately followed by use. Spilling does not decrease live range
Global Register Allocation: Alternative Spilling

- Splitting live ranges
- Coalesce
Global Register Allocation: Live Range Splitting

- A whole live range may have many interferences, but perhaps not all at the same time
- Split live range into two variables connected by copy
- Can reduce degree of interference graph
- Smart splitting allows spilling to occur in “cheap” regions
Global register allocation

Splitting example: Non contiguous live ranges - cannot be 2 coloured
Global Register Allocation: Live Range Splitting

Splitting example: Non contiguous live ranges - can be 2 coloured
Global register allocation: Coalescing

If two ranges don’t interfere and are connected by a copy coalesce into one – opposite of splitting. Reduces degree of nodes that interfered with both

\[x := y \text{ and } x \rightarrow y \in G \text{ then can combine } LR_x \text{ and } LR_y \]

- Eliminates the copy operation
- Reduces degree of LRs that interfere with both \(x \) and \(y \)
- If a node interfered with both before, coalescing helps
- As it reduces degree, often applied before colouring takes place
Global register allocation: Coalescing

Coalescing can make the graph harder to color

- Typically, $LR_{xy} > \max(LR_x, LR_y)$
- If $\max(LRx, LRy) < k$ and $k < LR_{xy}$ then LR_{xy} might spill, while LR_x and LR_y would not spill
Global register allocation: Coalescing

Observation led to conservative coalescing

1. Conceptually, coalesce x and y iff $x \to y \in G_I$ and $LR_{xy} \leq k$.
2. We can do better
 - Coalesce LR_x and LR_y iff LR_{xy} has < k neighbours with degree > k.
 - Only neighbours of “significant degree” can force LR_{xy} to spill.
3. Always safe to perform coalesce
 - Cannot introduce a node of non-trivial degree.
 - Cannot introduce a new spill.
Global register allocation: Other Approaches

- Top-down uses high level priorities to decide on colouring
- Hierarchical approaches - use control flow structure to guide allocation
- Exhaustive allocation - go through combinatorial options - very expensive but occasional improvement
- Re-materialisation - if easy to recreate a value do so rather than spill
- Passive splitting using a containment graph to make spills effective
- Linear scan - fast but weak; useful for JITs
Global register allocation: Ongoing work

- Eisenbeis et al examining optimality of combined reg alloc and scheduling. Difficulty with general control-flow
- Partitioned register sets complicate matters. Allocation can require insertion of code which in turn affects allocation.
- Leupers investigated use of genetic algs for TM series partitioned reg sets.
- New work by Fabrice Rastello and others. Chordal graphs reduce complexity
- As latency increases see work in combined code generation, instruction scheduling and register allocation
Summary

- Local Allocation - spill code
- Global Allocation based on graph colouring
- Techniques to reduce spill code