
Informatics 2 – Introduction to

Algorithms and Data Structures

Lab Sheet 6: Solving NP-hard problems via

(Mixed) Integer Linear Programs

In this lab we will be exploring a general approach for solving NP-hard (and
NP-complete) problems exactly in practice. This will be via the “magic box”
of (mixed) integer linear programming (MILP). An MILP is a program that
has an objective function and a set of constraints. It tells us (or the computer)
to optimise the value of the objective function making sure that none of the
constraints is violated. This can be either a minimisation or a maximisation
problem; in this lab we will be concerned with minimisation problems. The
general form of a minimisation MILP is the following:

minimize

n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ∈ {0, 1}, j = 1, . . . , n

Many NP-hard problems can be formulated as MILPs, by an appropriate choice
of variables and constraints. If we manage to come up with such a formulation,
we can use a MILP solver to find the optimal solution. You may think the
MILP solver as a magic box that inputs the MILP formulation of your problem
and returns an optimal solution. While that sounds fantastic, note that the
magic box will not return an optimal solution in polynomial time - the problem
that we formulated is NP-hard after all! What it does is that internally it runs a
clever algorithm which takes exponential time in the worst case, but in practice
runs faster than simply exhaustively searching through the possible solutions.

Remark: Before we proceed, let us remark the following. Suppose that instead
of the general MILP form above, we had the following program:

minimise

n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

0 ≤ xj ≤ 1, j = 1, . . . , n

1



This is called a general linear program (LP) formulation. Notice that the only
difference between the MILP and the LP is that the former requires the vari-
ables to be either 0 or 1 (integers) whereas the latter allows them to be any
real number between 0 and 1. Seems like a small difference, right? Well, this
small difference makes all the difference in the world when it comes to solv-
ing these problems. Any problem that can be formulated as an LP is solvable
in polynomial time. In fact, if you recall the 0/1-Knapsack of the lectures vs
the fractional Knapsack of the tutorials, you may recall that the former is NP-
complete whereas the latter can be solved in polynomial time via a greedy
algorithm. The integrality of the variables which naturally arises from formu-
lating NP-hard problems as optimisation programs makes them much harder to
solve. Why exactly this is the case, you don’t have to know right now.

Minimum Vertex Cover: In this lab sheet our goal will be to formulate the
NP-complete (optimisation) problem Vertex Cover as a MILP, and write a
Python program that inputs it to a solver and runs the solver to obtain a solu-
tion.

We will start with the formulation of the problem as a MILP. The important
part is to identify the right variables xj to use. Here, we will use binary indicator
variables:

xj =

{
1, if j is in the vertex cover

0, otherwise.

From this, we can write the objective function as

minimise

n∑
j=1

xj

Notice that if some node is in the vertex cover, then it contributes 1 to the sum,
otherwise it contributes 0. So in the end the sum captures exactly the size of
the vertex cover, and we are trying to minimise that.

Next we need to add the appropriate constraints. An obvious constraint is that
xj ∈ {0, 1}. Notice that if we do not use this, our solver could assign values
e.g., xj = 0.6, and then we cannot interpret this as a vertex cover: what does it
mean for a node to be included in the vertex cover only by a 0.6-fraction? We
want nodes to either be included or not. Finally, we need to add a constraint
to make sure that each edge of the graph is covered, i.e., that at least one of its
endpoints is in the vertex cover. Intuitively, we want something like

xu = 1 or xv = 1, for all (u, v) ∈ E

This is something that our solver cannot handle however. The reason why
MILPs are mixed integer linear programs is because all the constraints are
linear functions of the variables, and so is the objective function. We cannot
have an “or” function therefore, as it is not linear. Fortunatelly, we can write
the constraint in a different way to achieve exactly the same thing:

xu + xv = 1, for all (u, v) ∈ E

2



If at least one of xu and xv is set to 1, the constraint is satisfied and the edge
is covered. If both of them are 0, then the constraint is violated. Our solver
needs to return a feasible solution, so at least one of xu and xv will be set to 1
(possibly both).

In the end, we have the following MILP for Vertex Cover:

minimise
∑
j∈V

xj

subject to xu + xv ≥ 1 (u, v) ∈ E

xj ∈ {0, 1}, j ∈ V

Writing and solving MILPs in Python

As we said earlier, if we manage to formulate an NP-hard problem as a MILP,
we can feed it to some MILP solver. There are many MILP solvers out there
(e.g., CPLEX, Gurobi, etc), and each one might require the input to be pro-
vided in a slightly different format. So if you plan to use any of these solvers,
you would need to read the documention to see how they expect the MILP to
be represented. The most typical format is in terms of a constraint matrix A
and vectors of coefficients c and b. This usually requires some effort, but they
payoff is that it allows us to use the most powerful solvers out there.

For this lab sheet, we will work with an easier and more convenient representa-
tion, using the Python library pulp (see https://coin-or.github.io/pulp/

for the documentation). To install pulp on your machine, write

python -m pip install pulp

On MacOS you might need to use instead:

python3 -m pip install pulp

A new variable (together with a constraint that it lies in [0, 3]) can be defined
as follows:

x = LpVariable("x", 0, 3)

To define a binary variable, you may type:

x = LpVariable("x", cat=LpBinary)

Assume that we have a list myList of elements (e.g., integers) and we want to
create a binary variable for each one of those. We can do that as follows:

x = LpVariable.dicts("x"myList,cat=LpBinary)

To define a minimisation problem to solve, we have:

prob = LpProblem("MyMinimisationProblem",LpMinimize)

Now let’s assume that we want to add a constraint to our mininisation problem
based on the variables that we have created. To add the constraint x + y ≤ 2
we can simply write:

3



prob += x+y <=2

To solve the problem, we can write:

status = prob.solve()

To display the status of the solution, we can write LpStatus[status].

We can access the value of a certain variable by value(x). We can access the
value of the objective function by prob.objective.value().

See the documentation of the library for more details.

Exercise 1:
In this exercise, you are asked to write the Python code that formulates the
MILP for Vertex Cover in the format above (using the pulp library) for a
given graph G. The graph is represented as a class with an Adjacency Matrix
- you may use the code from the previous labs (e.g., in dijsktra.py) for this. In
particular, your code should start with the following:

from pulp import *

class Graph():

def __init__(self, numNodes):

self.numNodes = numNodes

self.AdjacencyMatrix = [[0 for col in range(numNodes)] for row in range(numNodes)]

self.nodeSet = set(i for i in range(numNodes))

def __str__(self):

return str(self.AdjacencyMatrix)

def add_edge(self,node1, node2):

self.AdjacencyMatrix[node1][node2] = 1

self.AdjacencyMatrix[node2][node1] = 1

def delete_edge(self,node1,node2):

self.AdjacencyMatrix[node1][node2] = 0

self.AdjacencyMatrix[node2][node1] = 0

To write the MILP representation, do the following steps:

1. Define a minimisation problem called ”VertexCover” using the LpProblem
command.

2. Define binary variables x, one for each node of the graph, using the
x=LpVariable.dicts(. . .) command.

3. Define the objective function as prob += lpSum(x)

4. For each node of the graph (i.e., for each pair of indices of the Adjacency
Matrix for which the entry is 1), create the appropriate coverage constraint
of the MILP and add it to prob.

4



5. Create a graph to test your solver on. You may for example use the
following graph at first, but feel free to create more graphs to experiment.

inputGraph = Graph(8)

inputGraph.add_edge(0,1)

inputGraph.add_edge(0,3)

inputGraph.add_edge(0,5)

inputGraph.add_edge(1,2)

inputGraph.add_edge(2,4)

inputGraph.add_edge(2,7)

inputGraph.add_edge(3,6)

inputGraph.add_edge(4,7)

inputGraph.add_edge(5,6)

inputGraph.add_edge(6,7)

6. Solve the MILP using prob.solve().

7. Define a set indSet, initialised to be empty. Iterate over all of the values
of the variables in the solution of prob.solve(). For every value that
is 1 (for numerical issues, you might want to consider every value that is
larger than e.g., 0.99), add the corresponding node to indSet.

8. Output indSet by printing it on the screen.

Exercise 2:
In this exercise you will run your implementation above on a sequence of random
graphs of increasing size. First you are asked to write a function

randomGraph(numNodes,k)

which creates a random graph with numNodes nodes, each of which has k neigh-
bours. In particular, for each node u in the graph you will have to sample at
random three distinct integers and add nodes between u and those nodes. You
do not have to account for the fact that the random process might choose u to be
a neighbour of u, as for large graphs this will happen with very small probability.

Once you have implemented this function, generate graphs with numNodes =
10, 50, 100, 500, 1000 and k = 3 and see how long the MILP solver takes to
find an optimal solution. You should observe that as the sizes grow large, the
program takes more time to finish. For some of the numbers above, you might
want to terminate the execution if the solver does not finish in a long time (you
can use ctrl+C for this).

5


