
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 9 - Approximation Algorithms - Solutions

1. Recall the Vertex Cover problem from the lectures, which we proved to be NP-
complete. We will consider several greedy algorithms for the problem.

Greedy1: Repeat the following process until the graph is empty: consider any edge
(v1, v2) of the graph G and include either v1 or v2 in the vertex cover S. Remove the
incident edges of the chosen node from the graph.

Greedy2: Repeat the following process until the graph is empty: consider any edge
(v1, v2) of the graph G and include both of v1 and v2 in the vertex cover S. Remove
the incident edges of both v1, v2 from the graph.

Greedy3: Start with an empty set S. While S is not a vertex cover, choose a node u
with maximum degree and add it to S; remove all the incident edges to u and repeat.

(a) Show that the approximation ratio of Greedy1 is ω(1).

(b) Show that the approximation ratio of Greedy2 is at most 2.

(c) Does Greedy3 also achieve an approximation ratio of 2? Justify your answer.

Solution:

(a) Consider a bipartite graph G = (L ∪ R,E) for which |L| = {x1, . . . , xk} and R
consists of k groups of nodes R1, . . . , Rk, with |Ri| = k/i. For any node e ∈ Ri,
there is an edge to i nodes of L, such that for any two nodes u, v ∈ Ri, u and v
do not have a common neighbour in L. From this, it follows that each node in L
has degree at most k, and each node in Ri has degree exactly i.

Choosing L is a vertex cover of size k in the graph. Our algorithm might pick
only nodes from R, and in particular all of the nodes from each Ri. These are
in total k

∑n
i=1 1/i = k ·H(k) nodes, where H(k) is the k-th harmonic number.

Asymptotically, we have that H(k) = Θ(lg k). The approximation ratio therefore
is Ω(lg k). Since n = Θ(k lg k + k), this is ω(1).

(b) First, let’s think of what the algorithm does on the example above. When it
selects an edge e it will include both of its endpoints to the vertex cover. This
means in particular that the nodes in L will be added. Once a node in L is added,
all of the edges incident to that node are “covered”, so we will not have to add
most of the nodes of R. In particular, for every node u ∈ L, we will add exactly
one node of R, and that is the node that shares the edge that made us “discover”
u in the first place. This example in fact shows that the approximation ratio of
Greedy2 is at least 2, as on this example it is precisely 2.

1

To see that 2 is also an upper bound, observe that any vertex cover, including
the optimal, must contain at least one of the two endpoints u and v of any edge
(u, v). Our algorithm produces a vertex cover that contains both, so it is only a
factor of 2 away. In addition, the algorithm does not include any nodes that are
not incident to edges to the vertex cover. This establishes the 2-approximation.

(c) Greedy 3 does not have an approximation ratio of 2. In fact, this also has
an approximation ratio of ω(1), and this follows from the example that we con-
structed for Greedy 1. In the first stage, it could pick the node from Rk, as
its degree is k, which is maximum. In the next step, it could choose both of the
nodes from Rk−1, as the degree of each of those is k − 1, and so on. In the end,
it may select exactly the same set of nodes as Greedy1, resulting in the same
approximation ratio.

2. A family is moving house, and they would like to move all of their belongings. To
do that, they would like to purchase as few boxes as possible, to transfer all of their
belongings. In particular, they have n items, with item i having size wi ∈ [0, 1), and
each box has size (capacity) 1. They would like to put all of the items in some box,
and use the minimum number of boxes possible.

(a) The family consider the following greedy algorithm for their problem: They fix
an ordering of their items and open a box. They start putting items in the box
until the next item in the order does not fit. When this happens, they open a
new box and continue with the same process. The process terminates when all
the items have been put in boxes.

Prove that this greedy algorithm has approximation ratio at most 2, i.e., it uses
at most twice as many boxes as the optimal solution.

(b) Prove that the problem faced by the family is NP-hard, by providing a polynomial-
time reduction from the following problem:

Partition: Given positive integers α1, α2, . . . , αn, decide whether it is
possible to find a subset A of {1, 2, . . . , n} such that

∑
i∈A αi =

∑
i/∈A αi.

Solution: This problem is the well-known online bin packing problem and the pro-
posed algorithm is the NextFit algorithm. For the proof, let Bi denote the capacity
occupied by the items in bin i and assume for simplicity that the algorithm opens an
even number m of bins during its execution. It holds that B1 +B2 > 1, as bin 2 was
opened because the first item that was put in bin 2 would not fit into bin 1. Similarly,
we have that B3 + B4 > 1, . . . , Bm−1 + Bm > 1. Adding up all of these inequalities
we get (since we have m/2 inequalities):

m∑
i=1

Bi > m/2

By definition, it holds that
∑m

i=1 Bi =
∑n

i=1 wi, while at the same time it obviously
holds that the value of the optimal solution is at least

∑n
i=1 wi. This implies that the

approximation ratio of the algorithm is at most 2.

For the NP-hardness of the problem, we can design a polynomial-time reduction from
Partition. We consider the decision version of the bin packing problem, where we

2

are also given an integer k and we would like to decide if we can pack the items in at
most k bins. We set wi = 2αi/

∑n
j=1 αj and k = 2.

Assume that have a solution to an instance of partition Partition, i.e., a set A ⊆
{1, 2, . . . , n} such that

∑
i∈A αi =

∑
i̸=A αi. In the instance of Bin Packing, we

place item i in the first box if any only if i ∈ A in the solution to Partition, and
to the second box otherwise. The total weight of box 1 is therefore

∑
i∈A wi =∑

i∈A

(
2αi/

∑n
j=1 αj

)
≤ 1, and similarly for the second box.

Conversely, suppose that we have a solution to Bin Packing. This means that for

each of the two boxes, we have
∑

i∈box wi =
∑

i∈box

(
2αi/

∑n
j=1 αj

)
≤ 1. This implies

that
∑

i∈box

(
αi/

∑n
j=1 αj

)
≤ 1/2 ⇒

∑
i∈box αi ≤

(∑n
j=1 αj

)
/2. In the instance of

Partition, this means that

∑
i∈A

αi ≤

 n∑
j=1

αj

 /2 and
∑
i/∈A

αi ≤

 n∑
j=1

αj

 /2,

which is only possible when
∑

i∈A αi =
∑

i/∈A αi, i.e., A is a solution to the instance
of Partition.

3. (Optional, more advanced) Consider the Set Cover problem:

Definition 1 (Weighted Set Cover). We are given a set of elements U and a
collection of subsets of U , each with an associated weight wi, whose union is U . The
goal is to find set of subsets of U whose union is equal to U , of minimum total weight,
i.e., a set of sets S = S1, . . . , Sk such that for every element j ∈ U , there exists a set
Si ∈ S such that j ∈ Si., such that

∑
i∈S wi is minimised.

Show that Set Cover is a generalization of Vertex Cover.

Consider the following greedy algorithm for Set Cover: Greedily select sets based on
the following “efficiency measure”: Let’s assume that we have already covered some
elements of U by our selection of sets, and let R be the remaining elements of U to
be covered. Among the sets that have not been yet selected, we will select that which
minimises

wi

|Si ∩R|
.

The idea is that we want to select sets that have small weight, but also cover lots of
elements1. The pseudocode for the algorithm is the following.

Algorithm 1 Greedy Weighted Set Cover

1: Start with R = U and C = ∅. ▷ Note that C is a set of sets.
2: while R ̸= ∅ do
3: Select a set Si ∈ argmin wi

|Si∩R| .

4: Add Si to C.
5: Remove the elements of Si from R ▷ These elements have now been covered.

6: Return C.

1This might be reminiscent of the greedy algorithm we used for 0/1-Knapsack, where we wanted elements
that have large value but small weight, and we took the ratio vi/wi as our measure of efficiency.

3

Prove that the approximation ratio of this greedy algorithm is O(lg n), where n = |U|.
Solution: We need to argue two things for the algorithm, (a) that it outputs a feasible
solution (i.e., a set cover) and (b) that the weight of the set cover that it outputs is at
most twice the size of the minimum possible set cover. Property (a) is straightforward
from the definition of the algorithm; the algorithm does not terminate until it covers
all the elements of U . Next, we argue about property (b).

To get some intuition, consider an element s in U . How much do we “pay” for this
element, in order to cover it? We will define the “cost” or “price” of element s as the
quantity we used in our greedy step. In particular, we define

cs =
wi

|Si ∩R|
, for all s ∈ Si ∩R.

We can insert this line between the “Select” and “Remove” commands of our while
loop in the pseudocode, without changing the complexity of the algorithm. This is
not necessary, but it will be useful as a reference in the analysis. Generally, the idea is
that when we select a set S, its weight is distributed over the costs cs of the elements
that this set covers. If we sum over all of the costs, then we get the total weight of
the set cover, therefore we have: ∑

Si∈C
wi =

∑
s∈U

cs.

Claim 1. For every set Sj, it holds that
∑

s∈Sj
cs ≤ H(|Sj |) · wj, where H(n) =∑n

i=1
1
i is the harmonic function.

Proof. For ease of notation, let us assume that Sj = {s1, . . . , sd} and let us assume
that these elements are labelled in the order in which they are assigned a “cost” csi by
the algorithm (ties can be broken arbitrarily). Consider the iteration of the algorithm
during which element si is covered by our Greedy algorithm, for some i ≤ d. Since we
consider the elements in order, at the beginning of the iteration, it holds that elements
si, si+1, . . . , sd are uncovered, and therefore it holds that si, si+1, . . . , sd ∈ R. In turn,
this implies that |Sj ∩R| ≥ d− i+1 and if we take the average cost of the set Sj (the
inefficiency), we have

wj

|Sj ∩R|
≤ wk

d− i+ 1
.

Since the Greedy algorithm selected a set Si with the minimum average cost, and the
“cost” of element si is the average cost of the set Si that covered it, we have that

csi =
wi

|Si ∩R|
≤ wj

|Sj ∩R|
≤ wj

d− i+ 1

Finally, we add up all of these inequalities for all elements s ∈ Sj , and we have

∑
s∈Sj

cs =

d∑
ℓ=1

csℓ ≤
d∑

ℓ=1

wj

d− ℓ+ 1
= wj ·

d∑
ℓ=1

1

d− ℓ+ 1

If we expand the latter quantity, we get wj

(
1
d + 1

d−1 + . . .+ 1
1

)
= H(d) · wj .

4

We will use Claim 1 to prove the approximation ratio of the mechanism. Let d∗ =
maxi |Si| be the maximum size of any set in S. Also let C∗ be the minimum weight
set cover and recall that C is the set cover returned by our Greedy algorithm. Also,
for ease of notation, let w∗ =

∑
Si∈C∗ wi be the weight of C∗. From Claim 1, we have

that

wi ≥
1

H(d∗)

∑
s∈Si

cs

Since C∗ is a set cover, we have that∑
Si∈C∗

∑
s∈Si

cs ≥
∑
s∈U

cs.

Putting everything together, we have that:

w∗ =
∑

Si∈C∗

wi ≥
∑

Si∈C∗

(
1

H(d∗)

∑
s∈Si

cs

)
≥ 1

H(d∗)

∑
s∈U

cs =
1

H(d∗)

∑
Si∈C

wi.

Therefore, our Greedy algorithm is a H(d∗) approximation. Since d∗ ≤ n, this is also
an H(n) approximation algorithm. It hold that H(n) = Θ(log n) and therefore we get
that the approximation ratio of our Greedy algorithm is O(log n).

5

