Introduction to Algorithms and
Data Structures

(Fully) Polynomial-time Approximation Schemes

Methods for approximation
algorithms

Greedy algorithms
Pricing method (also known as the Primal-Dual method)
Linear Programming and Rounding

Dynamic Programming on rounded inputs

Methods for approximation
algorithms

Greedy algorithms
Pricing method (also known as the Primal-Dual method)
Linear Programming and Rounding

Dynamic Programming on rounded inputs

The 0/1-knapsack problem

* We are given a set of nitems {7, 2, ..., n}.

* Each item/ has a non-negative weight wiand a non-
negative value V..

* We are given a bound W.

e (Goal: Select a subset S of the items such that Z w, < W
€S
and Zvi IS maximised.
ieS

3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n,W)

Array M=[0 ... n, 0 ... W]
Initialise M[0, w] =0, foreachw=0,1, ..., W

Fori=1,2,...,n
Forw=0,..., W

If (wi> w)

M[i, w] = M[i-7, w]
Else

M[i, w] = max{M[i-7, w] , wi+ M[i-7, w-w;]}
Endlf

Return M[n, W]

3 minute exercise

Design a dynamic programming algorithm for 0/1 knapsack.

Algorithm SubsetSum(n,W)

Array M=[0 ... n, 0 ... W]
Initialise M[0, w] =0, foreachw=0,1, ..., W

Fori=1,2,...,n
Forw=0,..., W

If (wi> w)

M[i, w] = M[i-7, w]
Else Vi

M, w] = max{M[i-7, w] , 3¢+ M[i-7, w-wi]}
Endlf

Return M[n, W]

0/1-KnapsacK in
Pseudopolynomial Time

The dynamic programming algorithm for 0/1 knapsack solves
knapsack optimally in time polynomial in n and W.

Algorithm Knapsack(n, W, V)

Array M=[0 ... n, 0 ... W]
Initialise M[0, w] =0, foreachw=0,1, ..., W

Fori=1,2,...,n
Forw=0,..., W
If (wi> w)

M[i, w] = M[i-7, w]
Else

M[i, w] = max{M[i-7, w] , vi+ M[i-1, w-w;]}
Endlf

Return M[n, W]

Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W, V)

Array M=[0 ... n, 0 ... V]
Initialise M[/, 0] =0, fori=0,7,...,n

Fori=1,2,...,n ;

Forv=1, ..., ZVJ
i—1 J=1
If (v> Z V)
j=1
M[i, v] = wi+ M[i-1, V]
Else
M[i, v] = max{M|i-7, v] , wi+ M]i-7, max(0, v-vi)[}
Endlf

Return the maximum value v such that M[n, v] < W.

Intuition

 We will create subproblems based on the values, not the
weights.

* Each subproblem will be defined by an index / and target
value v.

Another pseudopolynomial time
algorithm for 0/1-Knapsack

Algorithm Knapsack(n,W, V)

Array M=[0 ... n, 0 ... V]
Initialise M[/, 0] =0, fori=0,7,...,n

Fori=1,2,...,n ;
Forv=1, ..., Zvj

i—1 J=1
If (v> Z V)

.‘ M[i, V] _{Wi + M[i-1, V]

M[i, v] = max{M|i-7, v] , wi+ M]i-7, max(0, v-vi)[}
Endlf

Return the maximum value v such that M[n, v] < W.

Intuition

* We will create subproblems based on the values, not the weights.
* Each subproblem will be defined by an index / and target value v.

e M(/, v) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i} with total
value at least v.

Intuition

* We will create subproblems based on the values, not the weights.
* Each subproblem will be defined by an index / and target value v.

e M(/, v) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i} with total
value at least v.

* How many subproblems can we have?

Intuition

* We will create subproblems based on the values, not the weights.
* Each subproblem will be defined by an index / and target value v.

e M(/, v) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i} with total
value at least v.

* How many subproblems can we have?

* At most O(n2v*), where v* is the maximum value over all the
items.

Intuition

We will create subproblems based on the values, not the weights.
Each subproblem will be defined by an index / and target value v.

e M(/, v) is the smallest knapsack weight W so that it is possible to
obtain a solution using a subset of the items {7, ..., i} with total
value at least v.

How many subproblems can we have?

* At most O(n2v*), where v* is the maximum value over all the
items.

More details: Kleinberg and Tardos, Chapter 11, page 648-649.

What we know for knapsack

* A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

What we know for knapsack

* A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

 \What about approximation algorithms?

What we know for knapsack

* A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

 \What about approximation algorithms?

e First try Greedy: Greedy can achieve a 2-approximation.

What we know for knapsack

* A pseudo-polynomial algorithm for solving the problem
exactly (actually, a couple of those).

 \What about approximation algorithms?

e First try Greedy: Greedy can achieve a 2-approximation.

e Can we do better?

Rounding the values

Rounding the values

* We will use a rounding parameter b.

Rounding the values

* We will use a rounding parameter b.

e Foreachitemi,letV, = [v./D]

Rounding the values

* We will use a rounding parameter b.
e Foreachitemi,letV, = [v./D]

e |ntuition: We divide all the values by some factor b, and
then we round up the result to get integer numbers.

Rounding the values

* We will use a rounding parameter b.
e Foreachitemi,letV, = [v./D]

e |ntuition: We divide all the values by some factor b, and
then we round up the result to get integer numbers.

e Denote v, = V.- b

Rounding the values

* We will use a rounding parameter b.
e Foreachitemi,letV, = [v./D]

e |ntuition: We divide all the values by some factor b, and
then we round up the result to get integer numbers.

e Denote v, = V.- b

e It holds that for each item i, we have v, < V. < v. + b

Why are we doing this?

* Why are we scaling down the values of the knapsack
instance?

Why are we doing this?

* Why are we scaling down the values of the knapsack
instance?

» Because we know how to solve the problem in
polynomial time when the values are small. How?

Why are we doing this?

* Why are we scaling down the values of the knapsack
instance?

» Because we know how to solve the problem in
polynomial time when the values are small. How?

 We can use our pseudo-polynomial time algorithm.

Why are we doing this?

* Why are we scaling down the values of the knapsack
instance?

» Because we know how to solve the problem in
polynomial time when the values are small. How?

 We can use our pseudo-polynomial time algorithm.

e But wait, that’s not polynomial, running time was
O(n2v™).

Why are we doing this?

* Why are we scaling down the values of the knapsack
instance?

» Because we know how to solve the problem in
polynomial time when the values are small. How?

 We can use our pseudo-polynomial time algorithm.

e But wait, that’s not polynomial, running time was
O(n2v™).

e ltis, when v*is small (i.e., polynomial in n).

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

e |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

e |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

» We could substitute v; with v.//b and get an equivalent
problem.

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

e |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

» We could substitute v; with v.//b and get an equivalent
problem.

 Not quite, because o, #v,/b but V;= [v/b] =V;/b

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

e |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

» We could substitute v; with v.//b and get an equivalent
problem. this is not necessarily an integer

Va\

* Not quite, because 7.

l

{v7b) but V= [vi/b] =7i/b

How much do we lose?

 We solve the knapsack problem after rounding down the
values by a factor b.

 \Why should this change anything?

e |f we scale down the values, the objective function value
(the total value of the knapsack) is scaled down as well.

» We could substitute v; with v.//b and get an equivalent
problem. this is not necessarily an integer

Va\

* Not quite, because 7.

l

but this is

How much do we lose?

How much do we lose?

* We need to compare the solutions

How much do we lose?

* We need to compare the solutions

* when using V;

How much do we lose?

* We need to compare the solutions

* when using V;

~/

 when using v

How much do we lose?

* We need to compare the solutions

* when using V;

~/

e whenusing V.

e recall: v, = [v./b|b

How much do we lose?

* We need to compare the solutions
* when using V;

~/

* when using v
e recall: v, = [v./b|b

e |.e., we need to compute the rounding error.

How much do we lose?

* We need to compare the solutions

* when using V;

~/

* when using v
e recall: v, = [v./b|b
e |.e., we need to compute the rounding error.

e recall: Vv, < \71' < vV + b

How much do we lose?

* We need to compare the solutions
* when using V;

~/

 when using V;
e recall: v, = [v./b|b

e |.e., we need to compute the rounding error.
e recall: v,<V,<v,+b

e the optimal values differ by a factor of b.

The algorithm

Knapsack-Approx(€)

Set b = (e/2n) max v,

Run the DP algorithm for knapsack on values V;
Return the set S of items found.

Feasibility

e The set S is a feasible solution to knapsack.

Feasibility

e The set S is a feasible solution to knapsack.

 We didn’t mess up with the weights at all!

Feasibility

e The set S is a feasible solution to knapsack.
 We didn’t mess up with the weights at all!

 This is why we could not use the DP algorithm that we
knew from previous lectures.

Running Time

Running Time

* The DP algorithm runs in time O(n2v?).

Running Time

* The DP algorithm runs in time O(n2v?*).

e Recall: v* = maxv,
i

Running Time

* The DP algorithm runs in time O(n2v?*).

 Recall: v* = maxv,
i

* So here, it runs in time polynomial in n and max v,
i

Running Time

The DP algorithm runs in time O(n2v?*).

Recall: v* = max v,
i

So here, it runs in time polynomial in n and max v,
i

It holds that : ~ arg max v; = arg max b,
l l

Running Time

The DP algorithm runs in time O(n2v?*).

Recall: v* = max v,

So here, it runs in time polynomial in n and max v,

It holds that :

So we have:

l

l

arg max v, = arg max v,
i i

max v; = [max v;,/b| = O(n/e)

l

Running Time

The DP algorithm runs in time O(n2v?*).

Recall: v* = max v,

So here, it runs in time polynomial in n and max v,

It holds that :

So we have:

l

l

arg max v, = arg max v,
i i

max v; = [max v;,/b| = O(n/e)

b = (¢/2n) max v,

l

Running Time

* The overall running time is O(n3/g).

* This is polynomial in the input parameters and 1/¢.

Approximation Ratio

Approximation Ratio

e Let S* be any feasible solution, i.e., any set satisfying

> o<W
[ES*

Approximation Ratio

e Let S* be any feasible solution, i.e., any set satisfying

Approximation Ratio

e Let S* be any feasible solution, i.e., any set satisfying
2 w, < W
ISh

e We know that 2% 2% (why?)

1eS IES*

 \We have the following inequalities: V<V, <v+ b

Du< Y H<YH<Y +b)<nb+) v,
€S

1ES* 1ES™ €S €S

Approximation Ratio

Approximation Ratio

e Recall: b= (¢/2n) maxv,

Approximation Ratio

e Recall: b = (e/2n) max v

l

o Let V; be the largest value. We have that v, = 2nb/e

Approximation Ratio

e Recall: b = (e/2n) max v

l

o Let V; be the largest value. We have that v, = 2nb/e

e \We also have that V; = \’7j

Approximation Ratio

e Recall: b = (e/2n) max v

l

o Let V; be the largest value. We have that v, = 2nb/e

* We also have that v; = 7; v, = [vi/b]b = [2n/e]b

J Assume for simplicity
that 1/¢ is an integer.

Approximation

Recall: b = (¢/2n) maxv;

l

Ratio

Let V; be the largest value. We have that v, = 2nb/e

J
We also have that V; = \’7j

Assumption: Each item fits in the knapsack

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Approximation Ratio

Recall: b = (¢/2n) maxv;

l

Let V; be the largest value. We have that

We also have that V; = \’7j

Assumption: Each item fits in the knapsack

+ Thisimplies) ¥ >

€S

~/

j=

V; = 2nbl/e

v. = 2nbl/¢e

J

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Approximation Ratio

Recall: b = (¢/2n) maxv;

l

Let V; be the largest value. We have that

We also have that v; =
Assumption: Each item fits in the knapsack

+ Thisimplies) ¥ > ¥ =

€S

Vi

V; = 2nbl/e

v. = 2nbl/¢e

J

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Finally, from the inequalities of the previous slide, we have

Zv,.z Zﬁi—nb:' Zvl-Z(Ze_l—l)nb

€S

€S

€S

Approximation Ratio

Recall: b = (&/2n) max v,

Let v; be the largest value. We have that '_ V; = 2”17/8,

We also have that V; =

Assumption: Each item fits in the knapsack

+ Thisimplies) ¥ > ¥ =

l

€S

Vi

V; = 2nbl/e

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Finally, from the inequalities of the previous slide, we have

Zviz Zﬁi—nb:' Zvl-Z(Ze_l—l)nb

€S

€S

€S

Approximation Ratio

Recall: b = (&/2n) max v,

Let v; be the largest value. We have that '.‘ V; = 2”17/8,

Assumption: Each item fits in the knapsack

+ Thisimplies) ¥ >

l

€S

We also have that{y, =V, }

~/

j=

V; = 2nbl/e

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Finally, from the inequalities of the previous slide, we have

Zviz Zﬁi—nb:' Zvl-Z(Ze_l—l)nb

€S

€S

€S

Approximation Ratio

Recall: b = (&/2n) max v,
Let V; be the largest value. We have that ,v- = 2”17/8,

We also have that =V

J

v, = [v,/b]b = [2n/e]b
Assume for simplicity
that 1/¢ is an integer.

Assumption: Each item fits in the knapsack

+ This implies [

Finally, from the inequalifies of t

e previous slide, we have

Zviz Zﬁi—nb=}~ Zvl-Z(Ze_l—l)nb

€S

€S

€S

Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

e From this, for e < 1 we have that nb < 82 V.

l
€S

Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

e From this, for e < 1 we have that nb < 82 V.

l
€S

e Back to the inequalities:

Zvl-s Zﬁiszv'isZ(vi+b)§nb+2vi§(l+8)2vi

ES* eS* eS esS eS eS

Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

e From this, for e < 1 we have that nb < 82 V.

l
€S

e Back to the inequalities:

Zvis Zﬁiszv'isZ(vi+b)§nb+2vi§(l+8)2vi

1eS* eS* eS esS eS eS

Approximation Ratio

e Finally, from the inequalities of the previous slide, we have

e From this, for e < 1 we have that nb < 82 V.

l
€S

e Back to the inequalities:

Zvis 2‘71'32‘71'3Z(Vi+b)§”b+zvi§(1+€)zvi

1eS* eS* eS esS eS eS

PTAS vs FPTAS

e PTAS (Polynomial Time Approximation Scheme):
An approximation algorithm which, given an g, runs in

time polynomial in the input parameters and has
approximation ratio 1+¢.

e FPTAS (Fully Polynomial Time Approximation Scheme):
An approximation algorithm which, given an €, runs in

time polynomial in the input parameters and 1/ and has
approximation ratio 1+e.

PTAS vs FPTAS

e PTAS (Polynomial Time Approximation Scheme):
An approximation algorithm which, given an g, runs in

time polynomial in the input parameters and has
approximation ratio 1+e.

e FPTAS (Fully Polynomial Time Approximation Scheme):
An approximation algorithm which, given an g, runs Iin

time polynomial in the input parameters and 1/ and has
approximation ratio 1+e.

 What is the algorithm that we designed for knapsack? A
PTAS or an FPTAS?

A PTAS (sketch) for
Knapsack

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.

 There are O(knk) of those.

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.
 There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use a greedy algorithm to fill up the rest of the knapsack.

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.

 There are O(knk) of those.

* For each one of those subsets, put those items in the knapsack,
and use a greedy algorithm to fill up the rest of the knapsack.

* One can prove that this solution is a 1+1/k approximation in time
O(knk+1),

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.

There are O(kn*) of those.

For each one of those subsets, put those items in the knapsack,
and use a greedy algorithm to fill up the rest of the knapsack.

One can prove that this solution is a 1+1/k approximation in time
O(knk+1),

We can pick e=1/k, and we have a 1+€ approximation in time
O((1/e)n7¢).

A PTAS (sketch) for
Knapsack

 Consider all possible subsets of items with size at most k.

There are O(kn*) of those.

For each one of those subsets, put those items in the knapsack,
and use a greedy algorithm to fill up the rest of the knapsack.

One can prove that this solution is a 1+1/k approximation in time
O(knk+1),

We can pick e=1/k, and we have a 1+€ approximation in time
O((1/e)n7¢).

* This is polynomial in n but not in 1/«.

Inapproximability

e Definition: A problem P is strongly NP-hard, when there is

a polynomial time reduction from a strongly NP-hard to
problem to it.

* For a strongly NP-hard problem P,

* There is no Fully Polynomial Time Approximation
Scheme (FPTAS).

* There is no pseudo-polynomial time algorithm that
solves it exactly.

Approximation algorithms :
A big chapter

Approximation algorithms :
A big chapter

e Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

Approximation algorithms :
A big chapter

e Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

e Limitations of algorithms (tight instances).

Approximation algorithms :
A big chapter

e Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

e Limitations of algorithms (tight instances).

e Limitations of techniques (e.g., integrality gap).

Approximation algorithms :
A big chapter

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).

Inapproximability

Approximation algorithms :
A big chapter

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).
Inapproximability

e How do we prove this?

Approximation algorithms :
A big chapter

Different techniques (greedy, pricing method aka primal-dual,
LP-relaxation and rounding, DP on rounded inputs, brute-force
and greedy, dual fitting, dual LP-relaxation and rounding, ...)

Limitations of algorithms (tight instances).
Limitations of techniques (e.g., integrality gap).
Inapproximability

e How do we prove this?

e Sometimes easy, sometimes hard, mostly hard!

Reading

e Kleinberg and Tardos 11.8.

* Williamson and Shmoys 3.1 (slightly different exposition).

That’s all from me!

That’s all from me!

 Thank you everyone for attending the lectures and being
engaged with the course.

That’s all from me!

 Thank you everyone for attending the lectures and being
engaged with the course.

 There’s more to come (John’s lectures on the fascinating
topic of undecidability, assignment, quiz, tutorials, labs,
possibly a revision class, and of course the exam).

That’s all from me!

 Thank you everyone for attending the lectures and being
engaged with the course.

 There’s more to come (John’s lectures on the fascinating
topic of undecidability, assignment, quiz, tutorials, labs,
possibly a revision class, and of course the exam).

* |f you are interested in learning more about algorithms,
consider taking ADS next year.

That’s all from me!

 Thank you everyone for attending the lectures and being
engaged with the course.

 There’s more to come (John’s lectures on the fascinating
topic of undecidability, assignment, quiz, tutorials, labs,
possibly a revision class, and of course the exam).

* |f you are interested in learning more about algorithms,
consider taking ADS next year.

e See some of you then!

