Informatics 2 - Introduction to Algorithms and Data Structures

Tutorial 10: Register machines and computability (SOLUTIONS)

1. (a) Design a flowchart for a register machine that tests whether ' $A<B$ '.

(b) Design a machine that computes ' A div B ' and ' $A \bmod B$ ' (assuming B is nonzero), storing the results in C and D respectively.

Here, for clarity, we have assumed given some very simple components. ' $\mathrm{C}=0$ ' and ' $\mathrm{D}=0$ ' do what they say; ' $\mathrm{B} \leftarrow \mathrm{D}$ ' copies the value of D to B , setting D to 0 in the process.
(c) Show that if both $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ are RM-computable, then so is their composition h defined by $h(n)=g(f(n))$.
Saying f is RM-computable means that there's a register machine F such that, for any $n \in \mathbb{N}$, if F is run on an initial state with $\mathrm{A}=n$, it will terminate in a final state with $\mathrm{A}=f(n)$. Likewise, g is RM-computable if there's a machine G doing the same job for G. Given such machines, we may simply plug them together by connecting the exit point of F to the entry point of G. (Strictly
speaking, we first need to ensure F and G have the same number of registers, which we may do by adding extra (unused) registers to F or G as required.) the resulting machine will compute the composition h as required.
(d) Show that if e, $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are all RM-computable, then so is the function k defined by

$$
k(n)=\text { if } e(n)=0 \text { then } f(n) \text { else } g(n)
$$

Suppose e, f, g are computed by register machines E, F, G respectively. Let r be two more than the maximum number of registers of E, F, G, and expand E, F, G to equivalent machines $E^{\prime}, F^{\prime}, G^{\prime}$ with r registers.
Our machine for computing k will work as follows, given an initial state with A $=n$.

- Copy n from A into the two spare registers, then copy one of them back to A.
- Use E to compute $e(n)$ (in A), then use 'A?' to branch on whether $e(n)=0$.
- On the 0 branch, copy the value of n back into A, then apply F.
- On the + branch, copy n back into A and apply G.
- Merge the two exit points into one.

2. (a) What about the predicate 'the machine coded by m, when applied to the inputs coded by n, halts within k steps'? Would you expect this to be RM-decidable? Informally justify your answer.
This is certainly decidable. Given m, n and k, it is a purely mechanical task to simulate the execution of machine m on input n for up to k steps. This simulation will complete within finite time, and by then we'll know if the computation in question halts within k steps.
So the given predicate is decidable by a mechanical procedure. By an informal appeal to Church's thesis, then, we expect it to be decidable by a register machine. (Alternatively, one could explicitly construct such a machine and show it did this, but life is too short.)
(b) Let T be the set of all codes for register machines that compute some total function $\mathbb{N} \rightarrow \mathbb{N}$. It would be nice if there were some register machine that could tell us, given any $m, m^{\prime} \in T$, whether the machines represented by m and m^{\prime} gave rise to the same total function. Show however that no such machine is possible. Suppose such a machine D existed. Here's how we could use it to solve the halting problem.

- Given any m (coding a register machine) and n (coding a memory state), we can use our solution to (a) to construct a machine $P_{m, n}$ that computes the function
$k \mapsto$ (loop if machine m on input n halts within $\leq k$ steps, 0 otherwise)
- This machine $P_{m, n}$ will have a certain numerical code $p_{m, n}$. What's more, since the construction of $P_{m, n}$ is uniform in m and n, it will be possible to compute $p_{m, n}$ given m and n.
- The trick is to note that the computation of machine m on input n continues forever if and only if the function computed by $P_{m, n}$ is total. (If so, it will be the constant 0 function.) So we could solve the halting problem as follows: given m, n, compute $p_{m, n}$, then run the supposed machine D on $p_{m, n}$.

