Informatics 2 – Introduction to Algorithms and Data Structures
Tutorial 10: Register machines and computability
(SOLUTIONS)

1. (a) Design a flowchart for a register machine that tests whether ‘A < B’.

(b) Design a machine that computes ‘A div B’ and ‘A mod B’ (assuming B is non-zero), storing the results in C and D respectively.

Here, for clarity, we have assumed given some very simple components. ‘C=0’ and ‘D=0’ do what they say; ‘B ← D’ copies the value of D to B, setting D to 0 in the process.

(c) Show that if both \(f : \mathbb{N} \to \mathbb{N} \) and \(g : \mathbb{N} \to \mathbb{N} \) are RM-computable, then so is their composition \(h \) defined by \(h(n) = g(f(n)) \).

Saying \(f \) is RM-computable means that there’s a register machine \(F \) such that, for any \(n \in \mathbb{N} \), if \(F \) is run on an initial state with \(A = n \), it will terminate in a final state with \(A = f(n) \). Likewise, \(g \) is RM-computable if there’s a machine \(G \) doing the same job for \(G \). Given such machines, we may simply plug them together by connecting the exit point of \(F \) to the entry point of \(G \). (Strictly
speaking, we first need to ensure \(F \) and \(G \) have the same number of registers, which we may do by adding extra (unused) registers to \(F \) or \(G \) as required.) the resulting machine will compute the composition \(h \) as required.

(d) Show that if \(e, f, g : \mathbb{N} \to \mathbb{N} \) are all RM-computable, then so is the function \(k \) defined by

\[
k(n) = \begin{cases}
 e(n) & \text{if } e(n) = 0 \\
 f(n) & \text{else}
\end{cases}
\]

Suppose \(e, f, g \) are computed by register machines \(E, F, G \) respectively. Let \(r \) be two more than the maximum number of registers of \(E, F, G \), and expand \(E, F, G \) to equivalent machines \(E', F', G' \) with \(r \) registers.

Our machine for computing \(k \) will work as follows, given an initial state with \(A = n \).

- Copy \(n \) from \(A \) into the two spare registers, then copy one of them back to \(A \).
- Use \(E \) to compute \(e(n) \) (in \(A \)), then use \(‘A?’ \) to branch on whether \(e(n) = 0 \).
- On the 0 branch, copy the value of \(n \) back into \(A \), then apply \(F \).
- On the + branch, copy \(n \) back into \(A \) and apply \(G \).
- Merge the two exit points into one.

2. (a) What about the predicate ‘the machine coded by \(m \), when applied to the inputs coded by \(n \), halts within \(k \) steps’? Would you expect this to be RM-decidable? Informally justify your answer.

This is certainly decidable. Given \(m, n \) and \(k \), it is a purely mechanical task to simulate the execution of machine \(m \) on input \(n \) for up to \(k \) steps. This simulation will complete within finite time, and by then we’ll know if the computation in question halts within \(k \) steps.

So the given predicate is decidable by a mechanical procedure. By an informal appeal to Church’s thesis, then, we expect it to be decidable by a register machine. (Alternatively, one could explicitly construct such a machine and show it did this, but life is too short.)

(b) Let \(T \) be the set of all codes for register machines that compute some total function \(\mathbb{N} \to \mathbb{N} \). It would be nice if there were some register machine that could tell us, given any \(m, m' \in T \), whether the machines represented by \(m \) and \(m' \) gave rise to the same total function. Show however that no such machine is possible. Suppose such a machine \(D \) existed. Here’s how we could use it to solve the halting problem.

- Given any \(m \) (coding a register machine) and \(n \) (coding a memory state), we can use our solution to (a) to construct a machine \(P_{m,n} \) that computes the

\[
k \mapsto \text{(loop if machine } m \text{ on input } n \text{ halts within } \leq k \text{ steps, 0 otherwise)}
\]

- This machine \(P_{m,n} \) will have a certain numerical code \(p_{m,n} \). What’s more, since the construction of \(P_{m,n} \) is uniform in \(m \) and \(n \), it will be possible to compute \(p_{m,n} \) given \(m \) and \(n \).

- The trick is to note that the computation of machine \(m \) on input \(n \) continues forever if and only if the function computed by \(P_{m,n} \) is total. (If so, it will be the constant 0 function.) So we could solve the halting problem as follows: given \(m, n \), compute \(p_{m,n} \), then run the supposed machine \(D \) on \(p_{m,n} \).