
Algorithms and Data Structures
Content and Basic Notions



Algorithms and Data 
Structures

• A continuation of Introduction to Algorithms and Data 
Structures (INF2 - IADS).


• Mostly same techniques, more advanced applications.


• Divide-and-Conquer, Greedy, Dynamic Programming


• More emphasis on “Algorithms” rather than “Data 
Structures”. 


• More theorem proving. 
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The course content

• Review of algorithm design basics, including time and 
space complexity, and asymptotic notation.

• The divide-and-conquer paradigm:

• Sorting, matrix multiplication, Fourier transform.

• Upper and lower bound proofs.

• Solving recurrence relations.
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The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

• Network flows.

• Linear programming.

• The dynamic programming paradigm:

• Matrix-chain multiplication and other examples.



What is an algorithm?

• A set of instructions for solving a 
problem or performing a 
computation. 

• Origin of the name: Latinisation of the 
name given by Persian scholar 
Muhammad ibn Musa al-Khwarizmi.
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Example: Sorting

• Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24
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Describing algorithms: 
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).
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j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1
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Describing algorithms: 
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5



What should we expect 
from algorithms?

• Correctness: It computes the desired output.


• Termination: Eventually terminates (or with high 
probability).


• Efficiency:


• The algorithm runs fast and/or uses limited memory.


• The algorithm produces a “good enough” outcome.
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Correctness

• How do we prove that our algorithm is always correct?

• Proof techniques (induction, proof-by-contradiction 
etc).

• For those of you that took INF2-IADS: We did this a lot 
there!
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Running Time /  
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

• Control (branch, subroutine call, return, etc).

• Each instruction is carried out in constant time.

• We can count the number of instructions, or the number of steps.
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Memory Usage /  
Space Complexity

• Each memory cell can hold one element of the input.

• Total memory usage = Memory used to hold the input + 
extra memory used by the algorithm (auxiliary memory).

• Q: What is the total and the auxiliary memory usage of 
InsertionSort?
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Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we 
mean the worst-case running time, over all possible inputs to the 
algorithm.

• We can also measure the best-case running time, over all possible 
inputs to the problem.

• In between: average-case running time. 


• Running time of the algorithm on inputs which are chosen at 
random from some distribution.


• The appropriate distribution depends on the application (usually 
the uniform distribution - all inputs equally likely).
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Example: Average Running Time of 
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n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2    Bounded by some           for some constant ccn2



Asymptotic Notation

• When n becomes large, it makes less of a difference if an 
algorithm takes 2n or 3n steps to finish.


• In particular, 3logn steps are fewer than 2n steps.


• We would like to avoid having to calculate the precise 
constants.


• We use asymptotic notation (next lecture).


