
Algorithms and Data Structures
Content and Basic Notions

Algorithms and Data
Structures

• A continuation of Introduction to Algorithms and Data
Structures (INF2 - IADS).

• Mostly same techniques, more advanced applications.

• Divide-and-Conquer, Greedy, Dynamic Programming

• More emphasis on “Algorithms” rather than “Data
Structures”.

• More theorem proving.

The course content

The course content

• Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The course content

• Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

• The divide-and-conquer paradigm:

The course content

• Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

• The divide-and-conquer paradigm:

• Sorting, matrix multiplication, Fourier transform.

The course content

• Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

• The divide-and-conquer paradigm:

• Sorting, matrix multiplication, Fourier transform.

• Upper and lower bound proofs.

The course content

• Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

• The divide-and-conquer paradigm:

• Sorting, matrix multiplication, Fourier transform.

• Upper and lower bound proofs.

• Solving recurrence relations.

The course content (cont)

The course content (cont)

• The greedy paradigm:

The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

• Network flows.

The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

• Network flows.

• Linear programming.

The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

• Network flows.

• Linear programming.

• The dynamic programming paradigm:

The course content (cont)

• The greedy paradigm:

• Minimum spanning trees.

• Network flows.

• Linear programming.

• The dynamic programming paradigm:

• Matrix-chain multiplication and other examples.

What is an algorithm?

• A set of instructions for solving a
problem or performing a
computation.

• Origin of the name: Latinisation of the
name given by Persian scholar
Muhammad ibn Musa al-Khwarizmi.

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 2 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 19 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 19?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 6?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Is 4 < 2?

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

continues the same way…

Example: Sorting

• Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[1] = 2 < key = 4

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop

Describing algorithms:
Pseudocode

• The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5

What should we expect
from algorithms?

• Correctness: It computes the desired output.

• Termination: Eventually terminates (or with high
probability).

• Efficiency:

• The algorithm runs fast and/or uses limited memory.

• The algorithm produces a “good enough” outcome.

Correctness

Correctness

• How do we prove that our algorithm is always correct?

Correctness

• How do we prove that our algorithm is always correct?

• Proof techniques (induction, proof-by-contradiction
etc).

Correctness

• How do we prove that our algorithm is always correct?

• Proof techniques (induction, proof-by-contradiction
etc).

• For those of you that took INF2-IADS: We did this a lot
there!

Running Time /
Time Complexity

Running Time /
Time Complexity

• Different computers have different speeds.

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

• Control (branch, subroutine call, return, etc).

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

• Control (branch, subroutine call, return, etc).

• Each instruction is carried out in constant time.

Running Time /
Time Complexity

• Different computers have different speeds.

• Random Access Machine (RAM) model.

• Instructions:

• Arithmetic (add, subtract, multiply, etc).

• Data movement (load, store, copy, etc).

• Control (branch, subroutine call, return, etc).

• Each instruction is carried out in constant time.

• We can count the number of instructions, or the number of steps.

Example: Running Time of InsertionSort

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

Memory Usage /
Space Complexity

Memory Usage /
Space Complexity

• Each memory cell can hold one element of the input.

Memory Usage /
Space Complexity

• Each memory cell can hold one element of the input.

• Total memory usage = Memory used to hold the input +
extra memory used by the algorithm (auxiliary memory).

Memory Usage /
Space Complexity

• Each memory cell can hold one element of the input.

• Total memory usage = Memory used to hold the input +
extra memory used by the algorithm (auxiliary memory).

• Q: What is the total and the auxiliary memory usage of
InsertionSort?

Worst vs Best vs Average Case

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

• We can also measure the best-case running time, over all possible
inputs to the problem.

Worst vs Best vs Average Case

• Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

• We can also measure the best-case running time, over all possible
inputs to the problem.

• In between: average-case running time.

• Running time of the algorithm on inputs which are chosen at
random from some distribution.

• The appropriate distribution depends on the application (usually
the uniform distribution - all inputs equally likely).

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

• Select an input uniformly at random from all possible sequences with n numbers.

• On average, key will be smaller than half of the elements in A[1,…,j].

• The while loop will look “halfway” through the sorted subarray A[1,…,j].

• This means that tj =
j

2 Bounded by some for some constant ccn2

Asymptotic Notation

• When n becomes large, it makes less of a difference if an
algorithm takes 2n or 3n steps to finish.

• In particular, 3logn steps are fewer than 2n steps.

• We would like to avoid having to calculate the precise
constants.

• We use asymptotic notation (next lecture).

