Algorithms and Data Structures

Asymptotic Notation and Divide and Conquer Fundamentals

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Best case? Sorted array, $t_j = 1$

Worst case? Reverse sorted array, $t_j = j$

Bounded by some CN for some constant c

Bounded by some cn^2 for some constant c

- When n becomes large, it makes less of a difference if an algorithm takes 2*n* or 3*n* steps to finish.
- In particular, $3 \lg n$ steps are fewer than 2n steps.
- We would like to avoid having to calculate the precise constants.
- We use asymptotic notation.

O-notation. O(g(n)) = f(n): there exist positive constants *c* and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Ω-notation. $\Omega(g(n)) = f(n)$: there exist positive constants *c* and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

 Θ -notation. $\Theta(g(n)) = f(n)$: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

O-notation. O(g(n)) = f(n): there exist positive constants *c* and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

"The rate of growth of f(n) is at most that of g(n)."

O-notation. O(g(n)) = f(n): there exist positive constants *c* and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

For sufficiently large inputs, there is a constant such that $c \cdot g(n)$ is not smaller than f(n).

For example, for sufficiently large inputs, 2n is larger than $3 \lg n$. Therefore, $3 \lg n = O(n)$.

Use: If we can upper bound the running time of an algorithm by $c \cdot g(n)$, where *c* is some constant and $g(\cdot)$ is a function of the input, then we can say that the running time is O(g(n)).

Ω-notation. $\Omega(g(n)) = f(n)$: there exist positive constants *c* and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

"The rate of growth of f(n) is at least that of g(n)."

 Θ -notation. $\Theta(g(n)) = f(n)$: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$. "The rate of growth of f(n) is at most that of g(n)."

"The rate of growth of f(n) is the same as that of g(n)."

Little-O, Little-Omega

o-notation. o(g(n)) = f(n): for any constant *c*, there exists a constant $n_0 > 0$ such that $0 \le f(n) < c \cdot g(n)$ for all $n \ge n_0$.

"The rate of growth of f(n) is smaller than that of g(n)."

 ω -notation. $\omega(g(n)) = f(n)$: for any constant c, there exists a constant $n_0 > 0$ such that $0 \le c \cdot g(n) < f(n)$ for all $n \ge n_0$.

"The rate of growth of f(n) is larger than that of g(n)."

Little-O

o-notation. o(g(n)) = f(n): for any constant *c*, there exists a constant $n_0 > 0$ such that $0 \le f(n) < c \cdot g(n)$ for all $n \ge n_0$.

Equivalent (but less formal) definition: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$

As *n* approaches infinity, f(n) becomes insignificant compared to g(n).

Example: $2n = o(n^2)$.

Little-Omega

w-notation. w(g(n)) = f(n): for any constant *c*, there exists a constant $n_0 > 0$ such that $0 \le c \cdot g(n) < f(n)$ for all $n \ge n_0$.

Equivalent (but less formal) definition: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

As *n* approaches infinity, g(n) becomes insignificant compared to f(n).

Example: $4n^2 = \omega(n)$.

$$5n^3 + 100 = O(n^3)$$

 $5n^3 + 100 = O(n^3)$

 $5n^3 + 100 = \Omega(n^3)$

 $5n^3 + 100 = O(n^3)$

 $5n^3 + 100 = \Omega(n^3)$

 $5n^3 + 100 = \Theta(n^3)$

$$5n^{3} + 100 = O(n^{3})$$

 $5n^{3} + 100 = \Omega(n^{3})$
 $5n^{3} + 100 = \Theta(n^{3})$
 $5n^{3} + 100 = O(n^{4})$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = o(n^{4})$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$\lg n = o(n^5)$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$\lg n = o(n^5)$$

$$n^5 = o(2^n)$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$\lg n = o(n^5)$$

$$n^5 = o(2^n)$$

$$\lg(4n) = \lg n + \lg 4 = O(\lg n)$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$lg n = o(n^{5})$$

$$n^{5} = o(2^{n})$$

$$lg(4n) = lg n + lg 4 = O(lg n)$$

$$lg(n^{4}) = 4 lg n = O(lg n)$$

$$5n^{3} + 100 = O(n^{3})$$

$$5n^{3} + 100 = \Omega(n^{3})$$

$$5n^{3} + 100 = \Theta(n^{3})$$

$$5n^{3} + 100 = O(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{4})$$

$$5n^{3} + 100 = \Omega(n^{2})$$

$$5n^{3} + 100 = \omega(n^{2})$$

$$lg n = o(n^{5})$$

$$n^{5} = o(2^{n})$$

$$lg(4n) = lg n + lg 4 = O(lg n)$$

$$lg(n^{4}) = 4 lg n = O(lg n)$$

$$(4n)^{3} = 64n^{3} = \Theta(n^{3})$$

In class quiz

Running time hierarchy

O(n)	$O(n \log n)$	$O(n^2)$	$O(n^{\alpha})$	$O(c^n)$
linear		quadratic	polynomial	exponential
The algorithm accesses the input only a constant number of times.	The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.	The algorithm considers pairs of elements.	The algorithm performs many nested loops.	The algorithm considers many subsets of the input elements.
O(1)	superlinear	$\omega(n)$		
$\omega(1)$	superpolynomial	$\omega(n^{lpha})$		
o(n)	subexponential	$o(c^n)$		
	linear The algorithm accesses the input only a constant number of times. O(1) $\omega(1)$	linear The algorithm accesses the input only a constant number of times.The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions. $O(1)$ superlinear $\omega(1)$ superpolynomial	linearquadraticThe algorithm accesses the input only a constant number of times.The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.The algorithm considers pairs of elements. $O(1)$ superlinear $\omega(n)$ $\omega(1)$ superpolynomial $\omega(n^{\alpha})$	linearquadraticpolynomialThe algorithm accesses the input only a constant number of times.The algorithm splits the inputs into two pieces of similar size, solves each part and merges the solutions.The algorithm considers pairs of elements.The algorithm performs many nested loops. $O(1)$ superlinear $\omega(n)$ $\omega(1)$ superpolynomial $\omega(n^{\alpha})$

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

Worst case? Reverse sorted array, $t_j = j$

Bounded by some cn^2 for some constant c

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

A bit more formally:

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

A bit more formally: How large can t_i be in the worst case?

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

A bit more formally: How large can t_j be in the worst case? The loop can run at most *i* times, and $i \le j$

INSERTION_SORT (A) 1. FOR $j \leftarrow 2$ TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence $A[1 \dots j - 1]$ } 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

 $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$

A bit more formally: How large can t_i be in the worst case?

The loop can run at most i times, and $i \leq j$

This means that $t_j \leq j$

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

This means that $t_i \leq j$

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

This means that $t_i \leq j$

$$T(n) \le c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n j + c_5 \sum_{j=2}^n (j-1) + c_6 \sum_{j=2}^n (j-1) + c_7(n-1)$$

INSERTION_SORT (A) 1. FOR $j \leftarrow 2$ TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence $A[1 \dots j - 1]$ } 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 7. $i \leftarrow i - 1 = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

This means that $t_i \leq j$

$$T(n) \le c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n j + c_5 \sum_{j=2}^n (j-1) + c_6 \sum_{j=2}^n (j-1) + c_7 (n-1)$$

$$T(n) \le C \cdot n + C' \cdot \frac{n(n+1)}{2} = O(n^2)$$

Upper Bounds

Upper Bounds

- We proved that on any possible input, ${\it InsertionSort}$ takes time ${\cal O}(n^2)$.

- We proved that on any possible input, ${\it InsertionSort}$ takes time ${\cal O}(n^2)$.
- This is an **upper bound**, because the running time cannot be more than this (asymptotically).

- We proved that on any possible input, ${\it InsertionSort}$ takes time ${\cal O}(n^2)$.
- This is an **upper bound**, because the running time cannot be more than this (asymptotically).
- Sometimes we can be happy and stop there.

- We proved that on any possible input, ${\it InsertionSort}$ takes time ${\cal O}(n^2)$.
- This is an **upper bound**, because the running time cannot be more than this (asymptotically).
- Sometimes we can be happy and stop there.
- But what if our analysis was very "loose"?

- We proved that on any possible input, ${\it InsertionSort}$ takes time ${\cal O}(n^2)$.
- This is an **upper bound**, because the running time cannot be more than this (asymptotically).
- Sometimes we can be happy and stop there.
- But what if our analysis was very "loose"?
 - We bounded $t_j \leq j$. Is this possible for this to happen or are we being too "generous"?

Upper Bound $O(g_1(n))$: On *any possible input* to the problem, our algorithm will take time (at most) $O(g_1(n))$.

Upper Bound $O(g_1(n))$: On *any possible input* to the problem, our algorithm will take time (at most) $O(g_1(n))$.

Lower Bound $\Omega(g_2(n))$: There exists at least one input to the problem, on which our algorithm will take time (at least) $\Omega(g_2(n))$.

Upper Bound $O(g_1(n))$: On *any possible input* to the problem, our algorithm will take time (at most) $O(g_1(n))$.

Lower Bound $\Omega(g_2(n))$: There exists at least one input to the problem, on which our algorithm will take time (at least) $\Omega(g_2(n))$.

When $g_1(n) = g_2(n)$, we say that our running time analysis is *tight*, and we have fully understood the (asymptotic, worst-case) running time of the algorithm.

Example: Running Time of InsertionSort

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

 $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$ Worst case? **Reverse sorted array**, $t_j = j$ Bounded by some Cn^2 for some constant c

Example: Running Time of InsertionSort

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

 $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$

Worst case? Reverse sorted array, $t_j=j$ Bounded by some cn^2 for some constant c

To show the lower bound, we construct explicitly a reverse sorted array (choosing numbers) and explain how the algorithm will make j comparisons in each step j.

Example: Running Time of InsertionSort

INSERTION_SORT (A) 1. FOR j \leftarrow 2 TO length[A] n times 2. DO key $\leftarrow A[j]$ n-1 times 3. {Put A[j] into the sorted sequence A[1 . . j - 1]} 4. $i \leftarrow j - 1$ n-1 times 5. WHILE i > 0 and $A[i] > key \sum_{j=2}^{n} t_j$ times 6. DO $A[i+1] \leftarrow A[i] = \sum_{j=2}^{n} (t_j - 1)$ times 8. $A[i+1] \leftarrow key$ n-1 times

for loops, the tests are executed one more time than the loop body

Try it at home!

 $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$

Worst case? Reverse sorted array, $t_j=j$ Bounded by some cn^2 for some constant c

To show the lower bound, we construct explicitly a reverse sorted array (choosing numbers) and explain how the algorithm will make j comparisons in each step j.

Upper Bound $O(g_1(n))$: On *any possible input* to the problem, our algorithm will take time (at most) $O(g_1(n))$.

Lower Bound $\Omega(g_2(n))$: There exists at least one input to the problem, on which our algorithm will take time (at least) $\Omega(g_2(n))$.

When $g_1(n) = g_2(n)$, we say that our running time analysis is *tight*, and we have fully understood the (asymptotic, worst-case) running time of the algorithm.

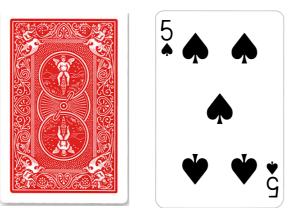
Introduction to Divide and Conquer

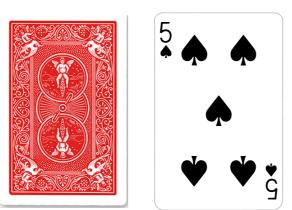
5	7	9	12
		and the second	

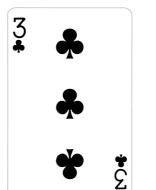
5	7	9	12

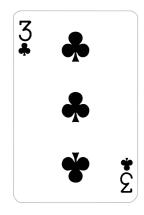
|--|

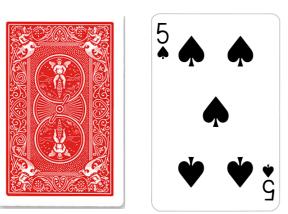
5	7	and the second secon	9	12				10	11	
		3	5		7	9	10	11	12	

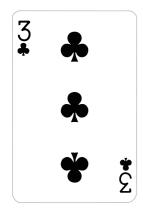


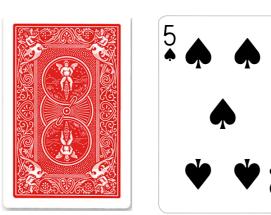


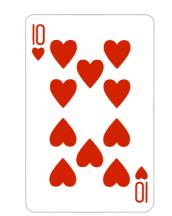


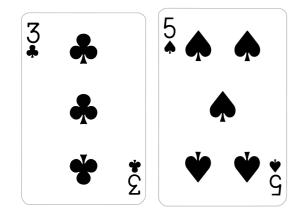


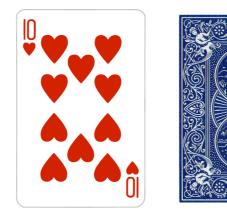


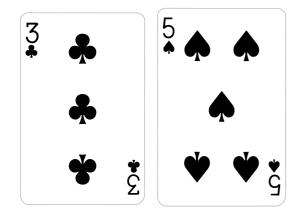


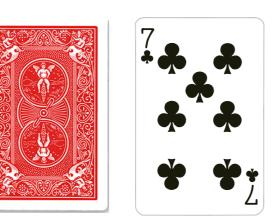


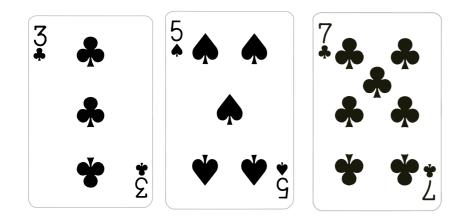


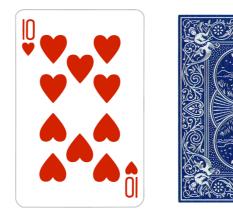


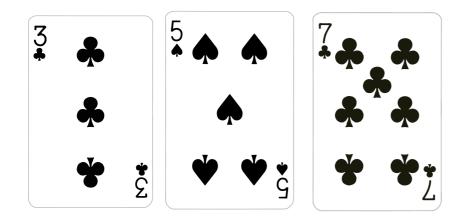


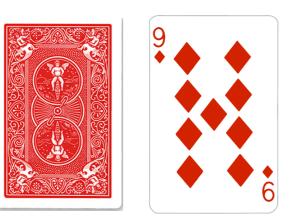


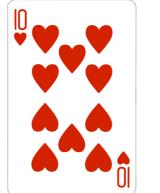


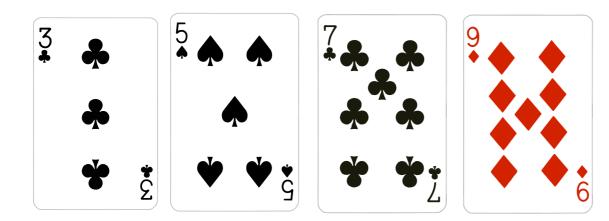


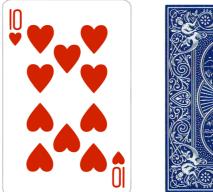


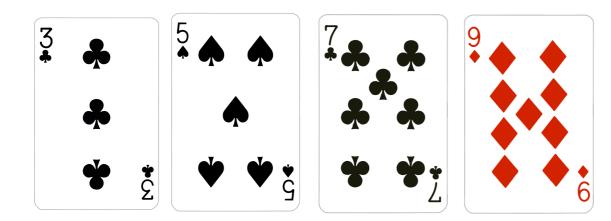


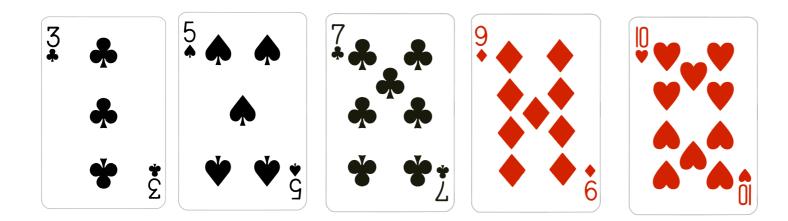


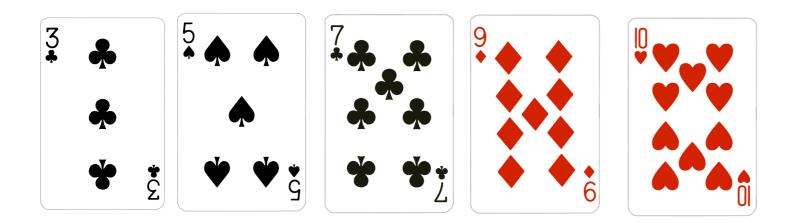


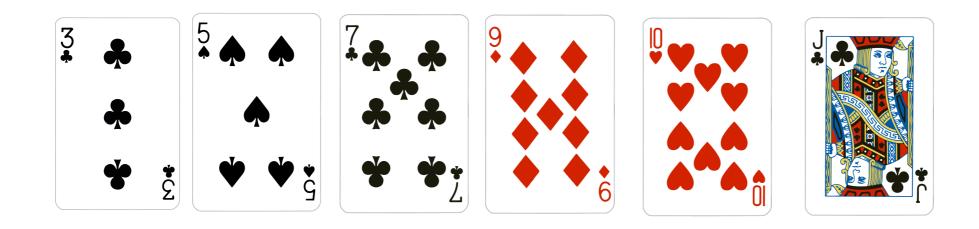


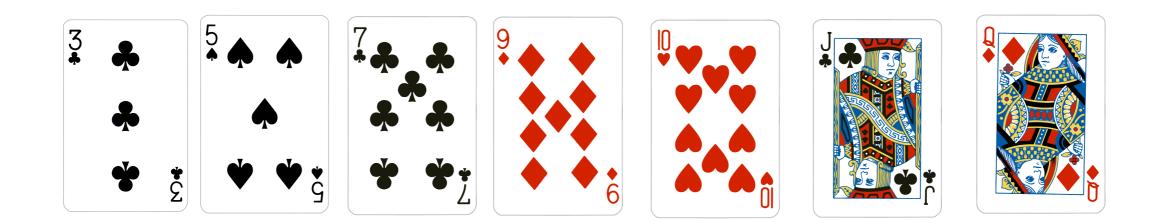












Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array **C** of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

```
If \mathbf{A}[i] \leq \mathbf{B}[j]

\mathbf{C}[k] = \mathbf{A}[i]

i=i+1

Else

\mathbf{C}[k] = \mathbf{B}[j]

j=j+1
```

Procedure **Merge**(**A**, **B**) /* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$ Initialise array **C** of size n+m *i*=1, *j*=1 For *k*=1, ..., m+n-1 If $\mathbf{A}[i] \leq \mathbf{B}[j]$ $\mathbf{C}[k] = \mathbf{A}[l]$ i = i + 1Else $\mathbf{C}[k] = \mathbf{B}[j]$

j=j+1

Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array **C** of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

```
If \mathbf{A}[i] \leq \mathbf{B}[j]

\mathbf{C}[k] = \mathbf{A}[i]

i=i+1

Else

\mathbf{C}[k] = \mathbf{B}[j]

j=j+1
```

What is the running time of Merge?

Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array C of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

```
If \mathbf{A}[i] \leq \mathbf{B}[j]

\mathbf{C}[k] = \mathbf{A}[i]

i=i+1

Else

\mathbf{C}[k] = \mathbf{B}[j]

j=j+1
```

What is the running time of Merge?

How many times can an element be compared in the worst case?

Procedure Merge

Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array C of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

```
If \mathbf{A}[i] \leq \mathbf{B}[j]

\mathbf{C}[k] = \mathbf{A}[i]

i=i+1

Else

\mathbf{C}[k] = \mathbf{B}[j]

j=j+1
```

What is the running time of Merge?

How many times can an element be compared in the worst case?

1, 3, 5 , ... , 2n-1 n, n+2, n+4 , ... , 3n-2

Procedure Merge

Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array **C** of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

```
If \mathbf{A}[i] \leq \mathbf{B}[j]

\mathbf{C}[k] = \mathbf{A}[i]

i=i+1

Else

\mathbf{C}[k] = \mathbf{B}[j]

j=j+1
```

What is the running time of Merge?

How many times can an element be compared in the worst case?

1, 3, 5 , ... , 2n-1 n, n+2, n+4 , ... , 3n-2

Charging argument: The cost of each iteration is "charged" to the "winner" of the comparison.

Procedure Merge

Procedure Merge(A, B)

/* Recall that $|\mathbf{A}| = n$ and $|\mathbf{B}| = m */$

Initialise array C of size n+m

i=1, *j*=1

```
For k=1, ..., m+n-1
```

If $\mathbf{A}[i] \leq \mathbf{B}[j]$ $\mathbf{C}[k] = \mathbf{A}[i]$ i=i+1Else $\mathbf{C}[k] = \mathbf{B}[j]$ j=j+1 What is the running time of Merge?

How many times can an element be compared in the worst case?

1, 3, 5 , ... , 2n-1 n, n+2, n+4 , ... , 3n-2

Charging argument: The cost of each iteration is "charged" to the "winner" of the comparison.

O(m+n)

• Divide and conquer algorithm.

- Divide and conquer algorithm.
- Split the array A[1,...,n] to two subarrays,
 A[1,...,n/2] and A[n/2+1, ..., n]

- Divide and conquer algorithm.
- Split the array A[1,...,n] to two subarrays,
 A[1,...,n/2] and A[n/2+1, ..., n]
- Sort each subarray using Mergesort.

- Divide and conquer algorithm.
- Split the array A[1,...,n] to two subarrays,
 A[1,...,n/2] and A[n/2+1, ..., n]
- Sort each subarray using Mergesort.
 - Stop the recursion when the subarray contains only one element.

- Divide and conquer algorithm.
- Split the array A[1,...,n] to two subarrays,
 A[1,...,n/2] and A[n/2+1, ..., n]
- Sort each subarray using Mergesort.
 - Stop the recursion when the subarray contains only one element.
- Merge the sorted subarrays A[1,...,n/2] and A[n/2+1, ..., n] using the Merge procedure.

Mergesort pseudocode

Algorithm Mergesort(A[*i*,...,*j*])

If *i=j*, return *i*

q = (i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right})

Mergesort pseudocode

Algorithm Mergesort(A[*i*,...,*j*])

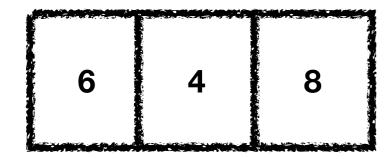
If *i=j*, return *i*

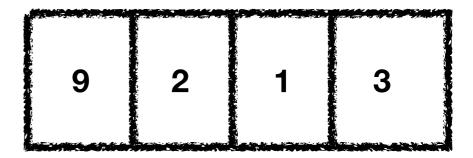
q = (i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right}) Initial call: Mergesort(A[i,...,n])

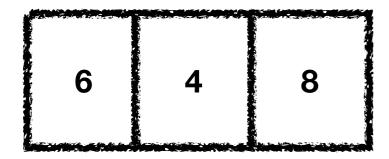
6	4	8	2	3

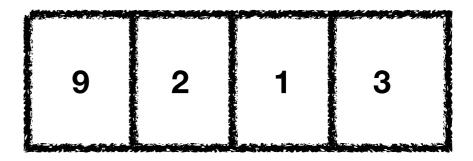
6	4	8	9	2	1	3



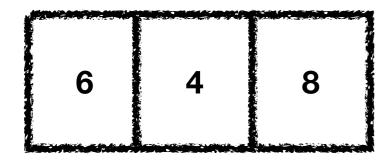


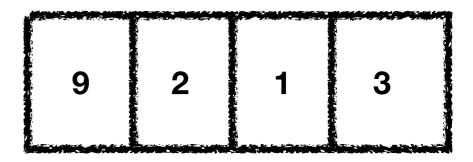
divide

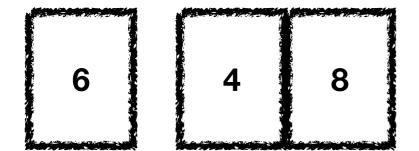




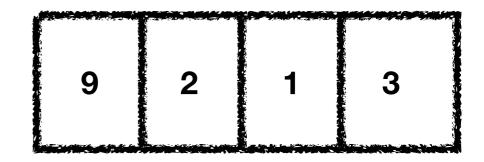
6

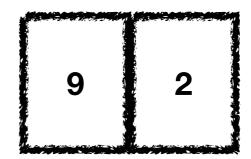


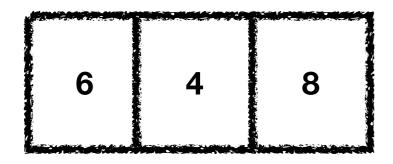


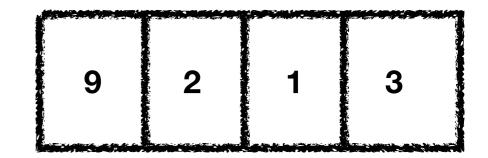


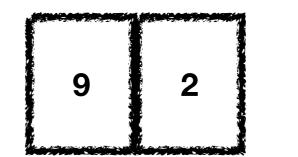


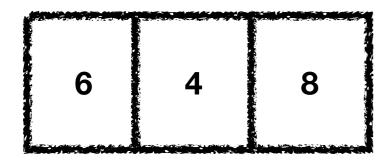


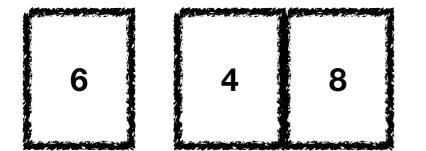


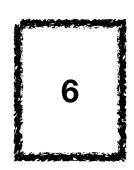


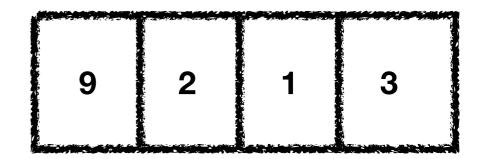


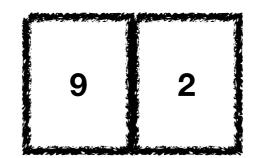


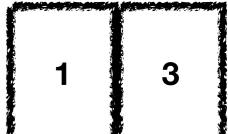


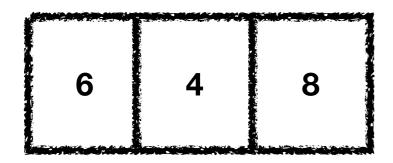


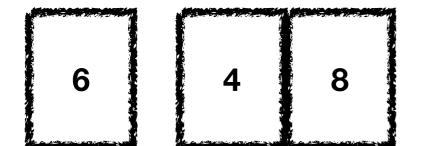


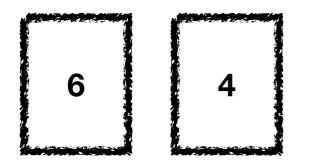


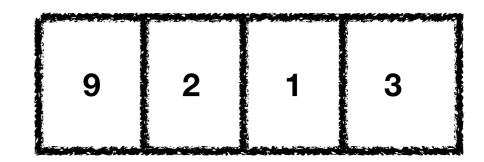


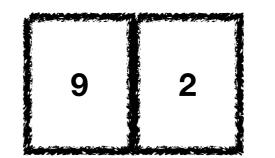




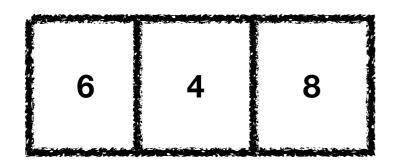


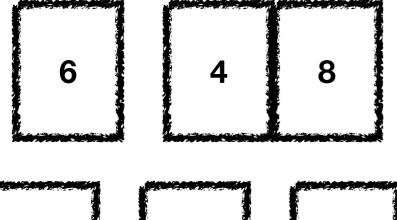


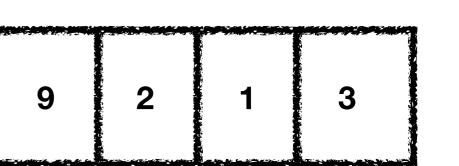


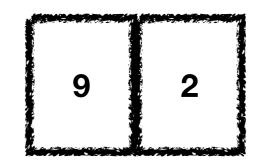




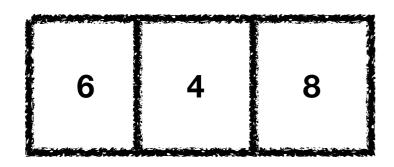


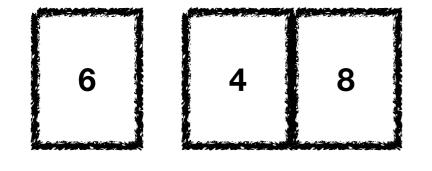




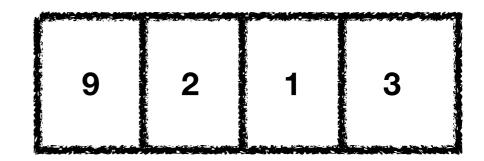


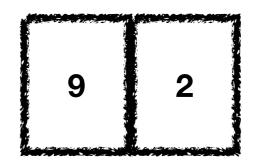
6	4	8
	a company of the	

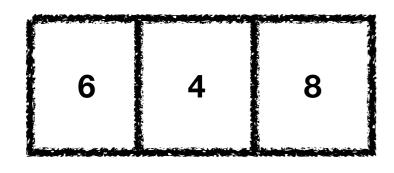


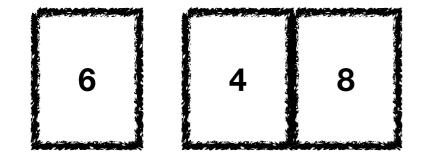


6	4	8

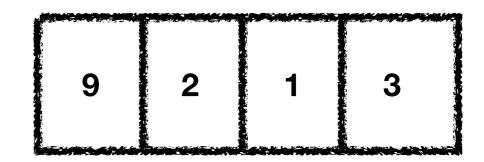


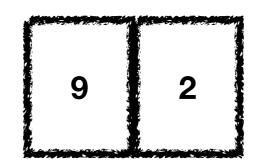




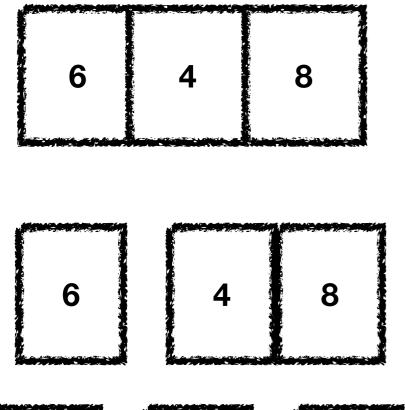


6	4	8

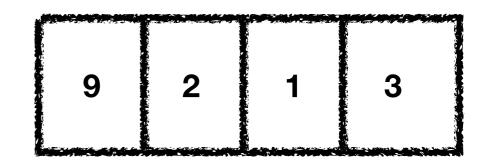


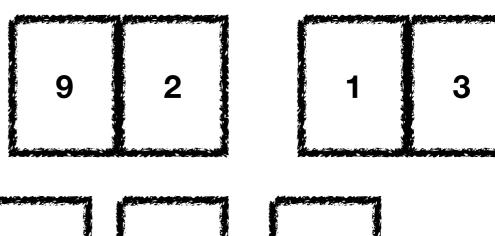


9	2

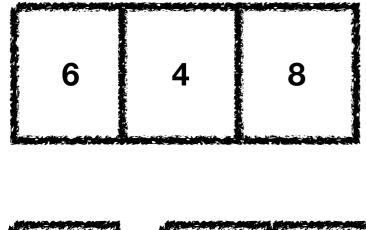


6	4	8
	Lamore	

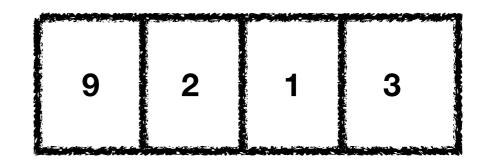


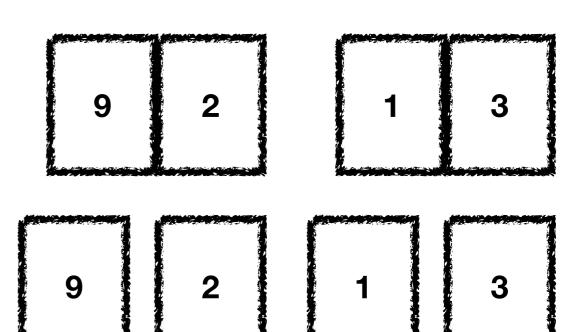


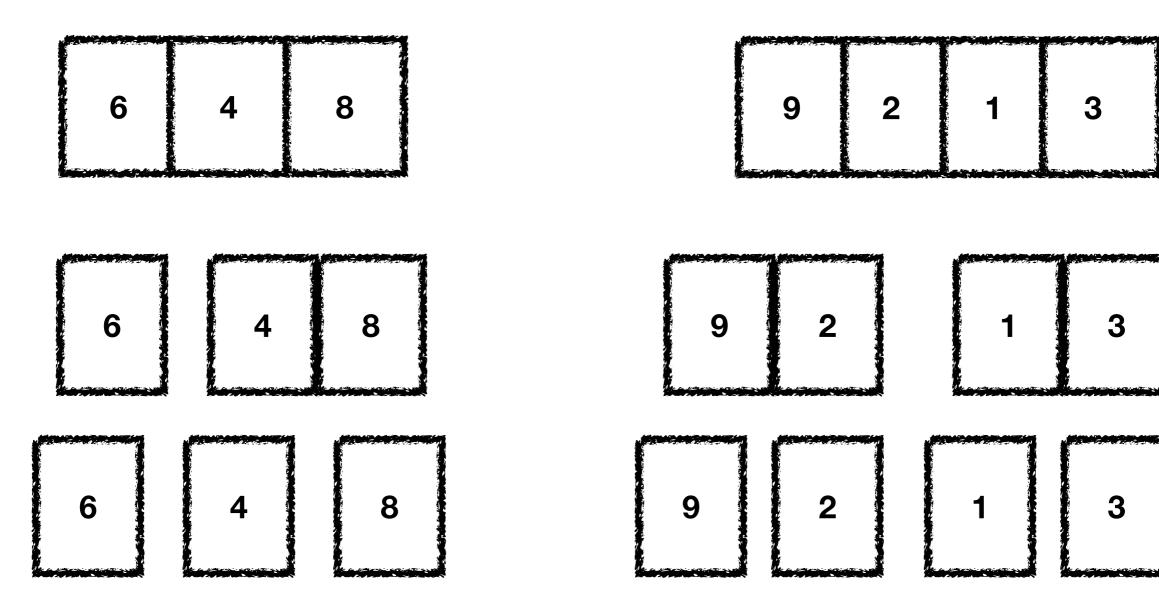
	9		2			1	
		ł		ł			
in a s			-		le au	وبلاده فرجيه	210

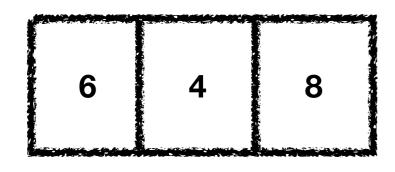


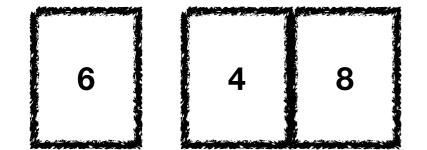
6	4	8



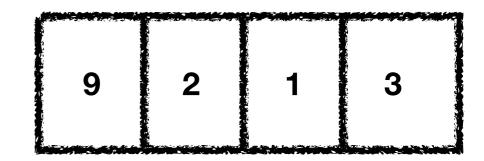


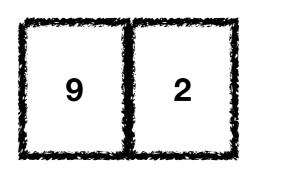


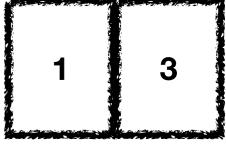


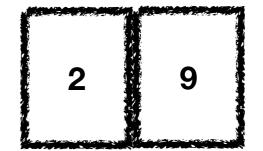


6	4	8

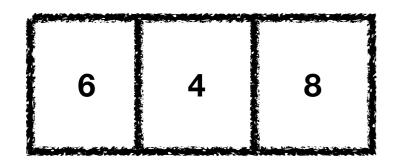


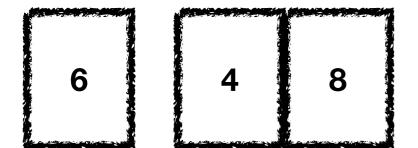




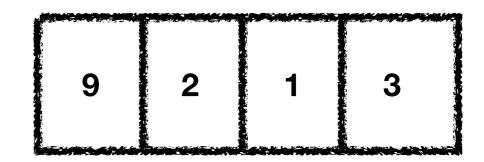


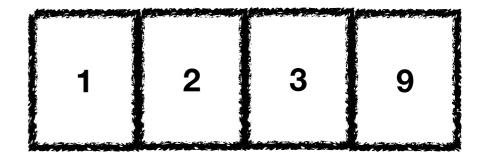
	3	

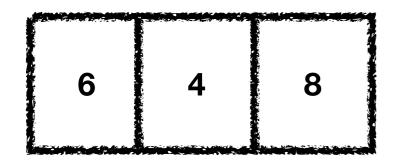


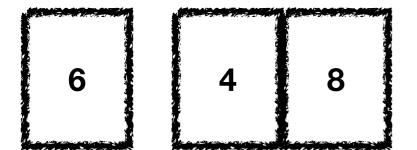


	C	0	
4	6	8	
	A/- 1 /	11 AV 2000 - 1 3 - 10	: : ::

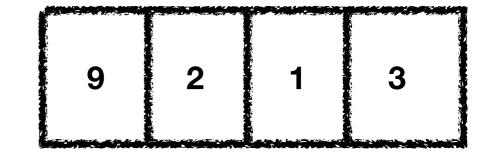


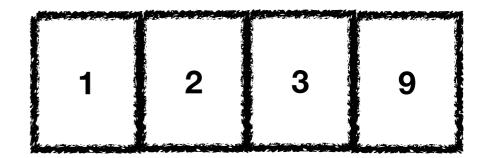






4	6	8
	•	





1	2	3	4	6	8	9
						THAT SHALL

• Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.
 - This is done via the Partition procedure.

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.
 - This is done via the Partition procedure.
- Then it calls itself recursively.

- Mergesort was based on the Merge procedure for joining the sorted sub-arrays into a sorted array.
- Quicksort first divides the array into two parts, such that the first part is "smaller" than the second part.
 - This is done via the Partition procedure.
- Then it calls itself recursively.
- The two parts are joined, but this is trivial.

The Partition procedure

Procedure **Partition**(**A**[*i*,...,*j*])

Choose a pivot element x of A

k = i

For h = i to j do

If **A**[*h*] < **x**

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap **A**[*k*] with **A**[*h*]

Return k

The Partition procedure

Procedure **Partition**(**A**[*i*,...,*j*])

Choose a pivot element x of A

k = i

For h = i to j do

If **A**[*h*] < **x**

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap **A**[*k*] with **A**[*h*]

Return k

Correctness of Partition: (CLRS p. 171-173)

The Partition procedure

Procedure **Partition**(**A**[*i*,...,*j*])

Choose a pivot element x of A

k = i

For h = i to j do

If **A**[*h*] < **x**

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap **A**[*k*] with **A**[*h*]

Return k

Correctness of Partition: (CLRS p. 171-173)

Running time O(n)

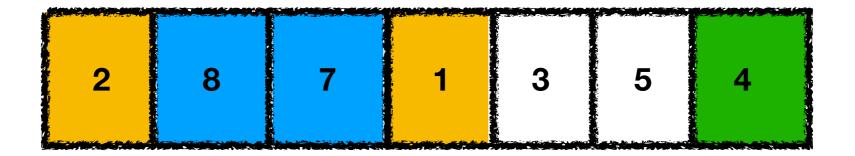
2		7	3	5	4
	are so the state of the second				

8	7	1		

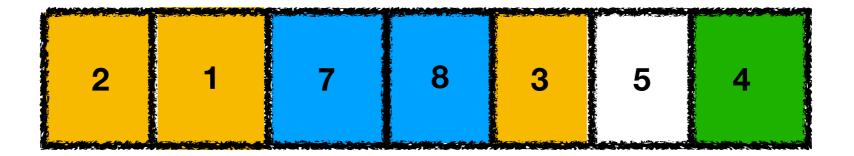
8	7	1		

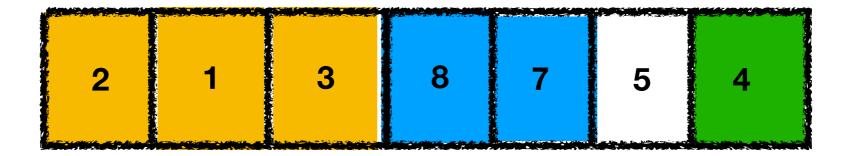
2	7		5	4

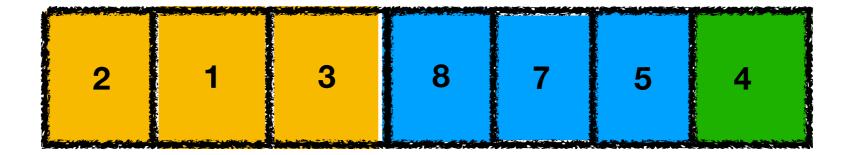
2	7	3	4
			Europen and the state

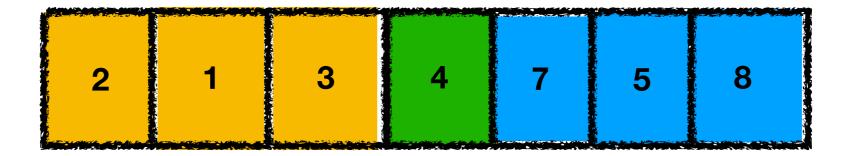


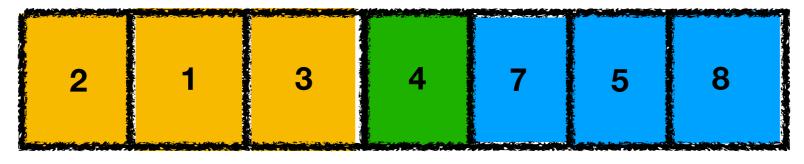
2 1 7 8 3 5 4	2	1	7	8	3	5	4
---------------	---	---	---	---	---	---	---



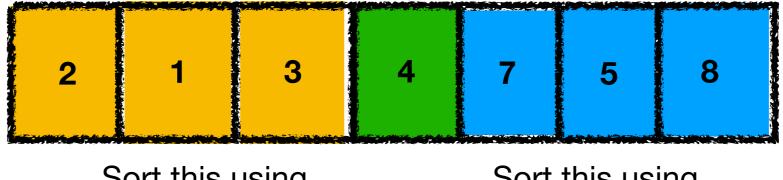




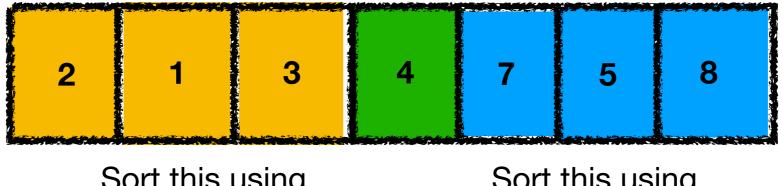




Sort this using Quicksort



Sort this using Quicksort Sort this using Quicksort



Sort this using Quicksort Sort this using Quicksort

Algorithm **Quicksort**(**A**[*i*,...,*j*])

y = Partition(A[i, ..., j]) Quicksort(A[i, ..., y-1])Quicksort(A[y+1, ..., j])

• Split the input into smaller sub-instances.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.

- Split the input into smaller sub-instances.
- Solve each sub-instance separately.
- Combine the solutions of the sub-instances into a solution for the problem.
- Often: For each sub-instance, the algorithm calls itself to solve it (recursion).

The instances become so small that they can be solved via a **brute force** algorithm.

What is the worst-case running time of Mergesort?

What is the worst-case running time of Mergesort?

 $\Theta(n \lg n)$

What is the worst-case running time of Mergesort?

 $\Theta(n \lg n)$

What is the worst-case running time of Quicksort?

What is the worst-case running time of Mergesort?

 $\Theta(n \lg n)$

What is the worst-case running time of Quicksort?

 $\Theta(n^2)$

What is the worst-case running time of Mergesort?

 $\Theta(n \lg n)$

What is the worst-case running time of Quicksort?

 $\Theta(n^2)$

How do we prove these?

Algorithm Mergesort(A[*i*,...,*j*])

If *i=j*, return *i*

q=(i+j)/2

 $A_{left}=Mergesort(A[i,...,q])$ $A_{right}=Mergesort(A[q+1,...,n])$ return Merge(A_{left} , A_{right})

Algorithm Mergesort(A[i,...,j])

If *i=j*, return *i*

q=(i+j)/2

 $A_{left}=Mergesort(A[i,...,q])$ $A_{right}=Mergesort(A[q+1,...,n])$ return Merge(A_{left} , A_{right})

Recurrence relation:

Algorithm Mergesort(A[i,...,j])

If *i=j*, return *i*

q=(i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right}) Recurrence relation:

T(n) = 2T(n/2) + f(n)

Algorithm Mergesort(A[i,...,j])

If *i=j*, return *i*

q = (i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right}) **Recurrence relation:**

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

Algorithm Mergesort(A[i,...,j])

If *i=j*, return *i*

q=(i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right}) **Recurrence relation:**

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

If we solve the recurrence relation we obtain $T(n) = O(n \lg n)$

Algorithm Mergesort(A[i,...,j])

If *i=j*, return *i*

q=(i+j)/2

A_{left}=Mergesort(A[*i*,...,*q*]) A_{right}=Mergesort(A[*q*+1,...,*n*]) return Merge(A_{left} , A_{right}) **Recurrence relation:**

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

If we solve the recurrence relation we obtain $T(n) = O(n \lg n)$

(next lecture)