
Algorithms and Data Structures
Asymptotic Notation and Divide and Conquer

Fundamentals

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

Asymptotic Notation

• When n becomes large, it makes less of a difference if an
algorithm takes or steps to finish.

• In particular, steps are fewer than steps.

• We would like to avoid having to calculate the precise
constants.

• We use asymptotic notation.

2n 3n

3 lg n 2n

Asymptotic Notation

-notation. : there exist positive constants
 and such that for all .

-notation. : there exist positive constants
 and such that for all .

-notation. : there exist positive constants
, , and such that for

all .

O O(g(n)) = f(n)
c n0 0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

Ω Ω(g(n)) = f(n)
c n0 0 ≤ c ⋅ g(n) ≤ f(n) n ≥ n0

Θ Θ(g(n)) = f(n)
c1 c2 n0 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

n ≥ n0

Asymptotic Notation

-notation. : there exist positive constants
 and such that for all .

“The rate of growth of is at most that of .”

O O(g(n)) = f(n)
c n0 0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

f(n) g(n)

Asymptotic Notation
-notation. : there exist positive constants and
 such that for all .

For sufficiently large inputs, there is a constant such that is
not smaller than .

For example, for sufficiently large inputs, is larger than .
Therefore, .

Use: If we can upper bound the running time of an algorithm by
, where is some constant and is a function of the

input, then we can say that the running time is .

O O(g(n)) = f(n) c
n0 0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

c ⋅ g(n)
f(n)

2n 3 lg n
3 lg n = O(n)

c ⋅ g(n) c g(⋅)
O(g(n))

Asymptotic Notation
-notation. : there exist positive constants

and such that for all .

“The rate of growth of is at least that of .”

-notation. : there exist positive constants
, , and such that for

all . “The rate of growth of is at most that of .”

“The rate of growth of is the same as that of .”

Ω Ω(g(n)) = f(n) c
n0 0 ≤ c ⋅ g(n) ≤ f(n) n ≥ n0

f(n) g(n)

Θ Θ(g(n)) = f(n)
c1 c2 n0 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

n ≥ n0 f(n) g(n)

f(n) g(n)

Little-O, Little-Omega
-notation. : for any constant , there exists a

constant such that for all .

“The rate of growth of is smaller than that of .”

-notation. : for any constant , there exists
a constant such that for all

.

“The rate of growth of is larger than that of .”

o o(g(n)) = f(n) c
n0 > 0 0 ≤ f(n) < c ⋅ g(n) n ≥ n0

f(n) g(n)

ω ω(g(n)) = f(n) c
n0 > 0 0 ≤ c ⋅ g(n) < f(n)

n ≥ n0

f(n) g(n)

Little-O
-notation. : for any constant , there exists a

constant such that for all .

Equivalent (but less formal) definition: .

As approaches infinity, becomes insignificant
compared to .

Example: .

o o(g(n)) = f(n) c
n0 > 0 0 ≤ f(n) < c ⋅ g(n) n ≥ n0

lim
n→∞

f(n)
g(n)

= 0

n f(n)
g(n)

2n = o(n2)

Little-Omega
-notation. : for any constant , there exists a

constant such that for all .

Equivalent (but less formal) definition: .

As approaches infinity, becomes insignificant
compared to .

Example: .

ω ω(g(n)) = f(n) c
n0 > 0 0 ≤ c ⋅ g(n) < f(n) n ≥ n0

lim
n→∞

f(n)
g(n)

= ∞

n g(n)
f(n)

4n2 = ω(n)

Examples

Examples
5n3 + 100 = O(n3)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

n5 = o(2n)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

n5 = o(2n)

lg(4n) = lg n + lg 4 = O(lg n)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

n5 = o(2n)

lg(4n) = lg n + lg 4 = O(lg n)

lg(n4) = 4 lg n = O(lg n)

Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

n5 = o(2n)

lg(4n) = lg n + lg 4 = O(lg n)

lg(n4) = 4 lg n = O(lg n)

(4n)3 = 64n3 = Θ(n3)

In class quiz

Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵) O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm

does not even

read the

whole input.

The algorithm

accesses the

input only

a constant

number of

times.

The algorithm

splits the inputs

into two pieces

of similar size,

solves each part

and merges the

solutions.

The algorithm

considers pairs

of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Worst case? Reverse sorted array, tj = j Bounded by some for some constant ccn2

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

A bit more formally:

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

A bit more formally: How large can be in the worst case?tj

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

A bit more formally: How large can be in the worst case?tj
The loop can run at most times, and i i ≤ j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

A bit more formally: How large can be in the worst case?tj
The loop can run at most times, and i i ≤ j
This means that tj ≤ j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

This means that tj ≤ j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

This means that tj ≤ j

T(n) ≤ c1n + c2(n − 1) + c3(n − 1) + c4

n

∑
j=2

j + c5

n

∑
j=2

(j − 1) + c6

n

∑
j=2

(j − 1) + c7(n − 1)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

This means that tj ≤ j

T(n) ≤ c1n + c2(n − 1) + c3(n − 1) + c4

n

∑
j=2

j + c5

n

∑
j=2

(j − 1) + c6

n

∑
j=2

(j − 1) + c7(n − 1)

T(n) ≤ C ⋅ n + C′ ⋅
n(n + 1)

2
= O(n2)

Upper Bounds

Upper Bounds
• We proved that on any possible input, InsertionSort takes time

O(n2) .

Upper Bounds
• We proved that on any possible input, InsertionSort takes time

O(n2) .

• This is an upper bound, because the running time cannot
be more than this (asymptotically).

Upper Bounds
• We proved that on any possible input, InsertionSort takes time

O(n2) .

• This is an upper bound, because the running time cannot
be more than this (asymptotically).

• Sometimes we can be happy and stop there.

Upper Bounds
• We proved that on any possible input, InsertionSort takes time

O(n2) .

• This is an upper bound, because the running time cannot
be more than this (asymptotically).

• Sometimes we can be happy and stop there.

• But what if our analysis was very “loose”?

Upper Bounds
• We proved that on any possible input, InsertionSort takes time

O(n2) .

• This is an upper bound, because the running time cannot
be more than this (asymptotically).

• Sometimes we can be happy and stop there.

• But what if our analysis was very “loose”?

• We bounded . Is this possible for this to happen or
are we being too “generous”?

tj ≤ j

Upper and Lower (Worst-
Case) Bounds

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

O(g1(n))
O(g1(n))

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

O(g1(n))
O(g1(n))

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

Ω(g2(n))

Ω(g2(n))

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

O(g1(n))
O(g1(n))

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

Ω(g2(n))

Ω(g2(n))

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the algorithm.

g1(n) = g2(n)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Worst case? Reverse sorted array, tj = j Bounded by some for some constant ccn2

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Worst case? Reverse sorted array, tj = j Bounded by some for some constant ccn2

To show the lower bound, we construct explicitly a reverse sorted array (choosing numbers) 
and explain how the algorithm will make comparisons in each step .j j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Worst case? Reverse sorted array, tj = j Bounded by some for some constant ccn2

To show the lower bound, we construct explicitly a reverse sorted array (choosing numbers) 
and explain how the algorithm will make comparisons in each step .j j

Try it at home!

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)

Introduction to Divide
and Conquer

Merging two sorted arrays

Given two sorted arrays A[1,…,n] and B[1,…,m], produce a
sorted array C[1, …, n+m] containing all the elements of A
and B.

Merging two sorted arrays

Given two sorted arrays A[1,…,n] and B[1,…,m], produce a
sorted array C[1, …, n+m] containing all the elements of A
and B.

5 7 9 12

Merging two sorted arrays

Given two sorted arrays A[1,…,n] and B[1,…,m], produce a
sorted array C[1, …, n+m] containing all the elements of A
and B.

5 7 9 12 3 10 11

Merging two sorted arrays

Given two sorted arrays A[1,…,n] and B[1,…,m], produce a
sorted array C[1, …, n+m] containing all the elements of A
and B.

5 7 9 12 3 10 11

3 5 7 9 10 11 12

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

How would you do this?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3, 5 , … , 2n-1
n, n+2, n+4 , … , 3n-2

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3, 5 , … , 2n-1
n, n+2, n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”

to the “winner” of the comparison.

Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m

i=1, j=1

For k=1, … , m+n-1 
  
 If A[i] ≤ B[j] 
 C[k] = A[i] 
 i=i+1 
 Else 
 C[k] = B[j] 
 j=j+1 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3, 5 , … , 2n-1
n, n+2, n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”

to the “winner” of the comparison.

O(m+n)

The Mergesort algorithm

The Mergesort algorithm
• Divide and conquer algorithm.

The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

• Sort each subarray using Mergesort.

The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

• Sort each subarray using Mergesort.

• Stop the recursion when the subarray contains only one
element.

The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

• Sort each subarray using Mergesort.

• Stop the recursion when the subarray contains only one
element.

• Merge the sorted subarrays A[1,…,n/2] and A[n/2+1, …, n]
using the Merge procedure.

Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Initial call: Mergesort(A[i,…,n])

Mergesort example
6 4 8 9 2 1 3

Mergesort example
6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 9 2 1 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

6 4 8 92 1 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

1 2 3 4 6 8 9

The Quicksort algorithm

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

• The two parts are joined, but this is trivial.

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Correctness of Partition: 
(CLRS p. 171-173)

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 871 3 5 4

The Quicksort algorithm
2 871 3 5 4

The Quicksort algorithm
2 8 71 3 5 4

The Quicksort algorithm
2 8 71 3 5 4

The Quicksort algorithm
2 871 3 54

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

Divide-and-Conquer

Divide-and-Conquer
• Split the input into smaller sub-instances.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a
solution for the problem.

Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a
solution for the problem.

• Often: For each sub-instance, the algorithm calls itself to
solve it (recursion). 
 
The instances become so small that they can be solved
via a brute force algorithm.

Worst-case Running Times

Worst-case Running Times

What is the worst-case running time of Mergesort?

Worst-case Running Times

What is the worst-case running time of Mergesort?

Θ(n lg n)

Worst-case Running Times

What is the worst-case running time of Mergesort?

Θ(n lg n)

What is the worst-case running time of Quicksort?

Worst-case Running Times

What is the worst-case running time of Mergesort?

Θ(n lg n)

What is the worst-case running time of Quicksort?

Θ(n2)

Worst-case Running Times

What is the worst-case running time of Mergesort?

Θ(n lg n)

What is the worst-case running time of Quicksort?

Θ(n2)

How do we prove these?

Worst-case Running Times,
Upper Bounds

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Worst-case Running Times,
Upper Bounds

Recurrence relation:
Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Worst-case Running Times,
Upper Bounds

Recurrence relation:

T(n) = 2T(n/2) + f(n)
Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Worst-case Running Times,
Upper Bounds

Recurrence relation:

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Worst-case Running Times,
Upper Bounds

Recurrence relation:

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

If we solve the recurrence
relation we obtain
T(n) = O(n lg n)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

Worst-case Running Times,
Upper Bounds

Recurrence relation:

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

If we solve the recurrence
relation we obtain
T(n) = O(n lg n)

(next lecture)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

