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Multiplication



Worst-case Running Times, 
Upper Bounds

Recurrence relation:








If we solve the recurrence 
relation we obtain 

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

T(n) = O(n lg n)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )



To be exactly precise

Recurrence relation: For some constant c, 


T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn,  when n > 2.
T(2) ≤ c,  otherwise.
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The Master Theorem
The Master Theorem is a very general theorem for solving 
recurrence relations.


Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
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The Master Theorem
The Master Theorem is a very general theorem for solving 
recurrence relations.


Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg="></latexit>

Example: For MergeSort,  and , we get α = b = 2 d = 1 O(n log n)
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We can use the  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Wait a minute John! 
This is ADS, not IADS.
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Ah, that’s right!
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How do we solve 
recurrence relations?

Two main techniques:

“Guess and verify”: We guess the solution, and verify that 
it works after substituting in the recurrence relation. Often 
the argument is by induction on . n

“Unrolling the recursion”: Figure out the solution for the 
first few levels, and then identifying a pattern. In the end 
we sum the solutions over all the levels. Often also called 
the method of “recursion trees”. 



Let’s use the “guess and verify” 
technique on this recurrence relation

Recurrence relation: For some constant c, 


T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn,  when n > 2.
T(2) ≤ c,  otherwise.



Let’s use the “guess and verify” 
technique on this recurrence relation

Recurrence relation: For some constant c, 


T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn,  when n > 2.
T(2) ≤ c,  otherwise.

Let’s consider the simpler version:


T(n) = {2T(n/2) + cn,  when n > 2.
T(2) ≤ c,  otherwise.
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Let’s use the “guess and verify” 
technique on this recurrence relation

We guess that:  for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .n = 2 T(2) ≤ c ≤ 2c = c ⋅ 2 log2 2

For , we have . 
.

n = 4 T(4) = 2T(2) + 4c ≤ 2c + 4c = 6c
4c log2 4 = 8c > 6c

For , we have . 
.

n = 8 T(8) = 2T(4) + 8c ≤ 12c + 8c = 20c
8c log2 8 = 24c > 20c

…

For simplicity, assume  for some integer .n = 2k k



Proof by Induction
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We guess that:  for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .  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n = 2 T(2) ≤ c ≤ 2c = cn log2 n
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. 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Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that  holds for 
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that  holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

T(2m) = 2T(2m−1) + c ⋅ 2m ≤ 2c ⋅ 2m−1 ⋅ log2 2m−1 + c ⋅ 2m

= c ⋅ 2m log2 2m − c ⋅ 2m log2 2 + c ⋅ 2m = c ⋅ 2m log2 m − c ⋅ 2m + c ⋅ 2m

= c ⋅ 2m log2 2m

recurrence Ind. Hyp. 

logarithm property 



Let’s use the “unrolling” technique 
on this recurrence relation

Recurrence relation: For some constant c, 


T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn,  when n > 2.
T(2) ≤ c,  otherwise.

Let’s consider the simpler version:


T(n) = {2T(n/2) + cn,  when n > 2.
T(2) ≤ c,  otherwise.
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Solving the Mergesort recursion
For simplicity, assume  for some integer .n = 2k k
First iteration: Price of  plus the cost of two subproblems of size .cn n /2

cn

T(n /2) T(n /2)

Second iteration: Price of  for each subproblem,  
plus the cost of two subproblems of size 

c ⋅ n /2
n /4

cn

c ⋅ n /2 c ⋅ n /2

T(n /4) T(n /4) T(n /4) T(n /4)



Solving the Mergesort recursion
In total, there will be  + 1 levels (input halved every time).


Level 0 has cost  = 


Level 1 has cost  =  =  

Level 2 has cost  =  =  

Level  has cost  =  =  

The last level has cost 

logn

C0(n) cn

C1(n) 2c ⋅ n/2 cn

C2(n) 4c ⋅ n/4 cn

j Cj(n) 2jc ⋅ n/2j cn

cn
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In total, there will be  + 1 levels (input halved every time).


Level 0 has cost  = 


Level 1 has cost  =  =  

Level 2 has cost  =  =  

Level  has cost  =  =  

The last level has cost 

logn

C0(n) cn

C1(n) 2c ⋅ n/2 cn

C2(n) 4c ⋅ n/4 cn

j Cj(n) 2jc ⋅ n/2j cn

cn

First few levels

Identifying a pattern
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Solving the Mergesort recursion

Recurrence relation:

T(n) =
log n+1

∑
j=1

Cj(n) + cn =
log n+1

∑
j=1

cn + cn



Solving the Mergesort recursion

Recurrence relation:

T(n) =
log n+1

∑
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∑
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Sum the solutions



Solving the Mergesort recursion

Recurrence relation:

The overall running time is . 
        

O(n log n)

T(n) =
log n+1

∑
j=1

Cj(n) + cn =
log n+1

∑
j=1

cn + cn

Sum the solutions
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Guess and verify vs 
unrolling

“Unrolling” is not really a formal proof technique. 

“Identifying a pattern” is informal. 

It helps us figure out what to “guess”.

Then we can “verify”.

For a formal proof, those techniques could be used 
together.



The Quicksort algorithm

Algorithm Quicksort(A[i,…,j]) 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The Quicksort algorithm

Algorithm Quicksort(A[i,…,j]) 
 
            y = Partition(A[i,…,j]) 
                  Quicksort(A[i,…,y-1]) 
                  Quicksort(A[y+1,…,j])

      T(n) ≤ T(n1) + T(n2) + cn
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Running time of Quicksort

Mergesort:     T(n) ≤ 2T(n) + cn

Quicksort:       T(n) ≤ T(n1) + T(n2) + cn

When    , the running time is the same as Mergesort.n1 = n2

What is the worst possible running time?
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cn

T(n − 1) T(0)

Second iteration: Price of , plus the cost of two subproblems of size  and .c(n − 1) n − 2 0

cn

c(n − 1) 0
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“Unrolling”

First iteration: Price of  plus the cost of two subproblems of size  and cn n − 1 0.

cn

T(n − 1) T(0)

Second iteration: Price of , plus the cost of two subproblems of size  and .c(n − 1) n − 2 0

cn

c(n − 1) 0

T(n − 2) T(0)



Solving the Quicksort recursion
How many levels do we have in total?  levels.


Level 0 has cost  = 


Level 1 has cost  =  

Level 2 has cost  =  

Level  has cost  =  

The last level has cost 

n

C0(n) cn

C1(n) c(n − 1)

C2(n) c(n − 2)

j Cj(n) c(n − j)

c
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Solving the Quicksort recursion

Recurrence relation:

T(n) =
n−1

∑
j=1

Cj(n) = c(n + n − 1 + n − 2 + … + 1)

= c
n(n + 1)

2
≤ cn2



Solving the Quicksort recursion

Recurrence relation:

The overall running time is . 
        

O(n2)

T(n) =
n−1

∑
j=1

Cj(n) = c(n + n − 1 + n − 2 + … + 1)

= c
n(n + 1)

2
≤ cn2
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Lower bound for Quicksort

Is our analysis tight enough? Could it be that there is a 
better analysis that shows a  running time?o(n2)

Can we show a lower bound of  on the running time of 
Quicksort?

Ω(n2)



Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the 
problem, our algorithm will take time (at most) .


Lower Bound : There exists at least one input to the 
problem, on which our algorithm will take time (at least) 
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Lower bound for Quicksort

Is your analysis tight enough? Could it be that there is a 
better analysis that shows a  running time?o(n2)

Can we show a lower bound of  on the running time of 
Quicksort?

Ω(n2)

Q: Can you think of an input where Quicksort takes time ?Ω(n2)



Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the 
problem, our algorithm will take time (at most) .


Lower Bound : There exists at least one input to the 
problem, on which our algorithm will take time (at least) 

.


When , we say that our running time analysis 
is tight, and we have fully understood the (asymptotic, 
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)



Upper and Lower (Worst-
Case) Bounds for algorithms
Upper Bound : On any possible input to the 
problem, our algorithm will take time (at most) .


Lower Bound : There exists at least one input to the 
problem, on which our algorithm will take time (at least) 

.


When , we say that our running time analysis 
is tight, and we have fully understood the (asymptotic, 
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)
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Upper and Lower (Worst-
Case) Bounds for problems

Upper Bound : There exists an algorithm which, on 
any possible input to the problem, takes time (at most) 

.

O(g1(n))

O(g1(n))

Lower Bound : For any algorithm, there exists at 
least one input to the problem, on which the algorithm will 
take time (at least) .

Ω(g2(n))

Ω(g2(n))



Upper and Lower (Worst-
Case) Bounds for problems

Upper Bound : There exists an algorithm which, on 
any possible input to the problem, takes time (at most) 

.

O(g1(n))

O(g1(n))

Lower Bound : For any algorithm, there exists at 
least one input to the problem, on which the algorithm will 
take time (at least) .

Ω(g2(n))

Ω(g2(n))

When , we say that our running time analysis 
is tight, and we have fully understood the (asymptotic, 
worst-case) running time of the problem.

g1(n) = g2(n)
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For us here concretely

Upper Bound : We have identified an algorithm 
(Mergesort) that has worst-case running time .

O(n log n)
O(n log n)

Lower Bound : We need to prove that every 
algorithm has worst-case running time .

Ω(n log n)
Ω(n log n)

In other words, we will prove that there is no algorithm that 
is asymptotically better than Mergesort.
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Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2    a1    a3

Is a2 < a3 ? Is a1 < a3 ? a1    a2    a3

a3    a1    a2 a1    a3    a2

No Yes

a2    a3    a1

No



Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2    a1    a3

Is a2 < a3 ? Is a1 < a3 ? a1    a2    a3

a3    a1    a2 a1    a3    a2

No Yes

a3    a2    a1 a2    a3    a1

No
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Lower bound for sorting

We need as many comparisons as the depth of the tree 
(length of the longest path from the root to the leaves).

The decision tree has  leavesn!

A leaf is a permutation of {a1, a2, … , an}

Every possible permutation can appear as a leaf, since 
every possible permutation is a valid output.
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Lower bound for sorting

Fact: Every binary tree of depth  has at most  leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that   log2(n!) = Ω(n log n)

   log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)

Think about it at home! Try to prove it using induction.

      = log2(1) + log2(2) +…+ log2(n)
    (half)≥ log2(n/2) +…+ log2(n)
    =  ≥ log2(n/2) +…+ log2(n/2) (n/2) log2(n/2)
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Quick Note
This lower bound is often referred to as a lower bound for 
“comparison based sorting”.

But it is indeed a general sorting lower bound, as in the 
general case, the order between elements is defined via 
comparisons between them.

If our array has some specific properties, then we can sort in 
 time, using algorithms that do not apply to the general 

problem. 
O(n)

e.g., CountingSort
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Proving lower bounds
Consider some criterion A that we would like to minimise  (could be 
running time, memory, etc).

We want to find the best algorithm (asymptotically) for criterion A.

The best possible achievable performance is  for some 
function .

Θ(g(n))
g(n)

Upper bound: We construct an algorithm that has performance 
 for criterion A.O(g(n))

Lower bound: We show that for any algorithm, the performance for 
criterion A is .Ω(g(n))
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Proving lower bounds

The best possible achievable performance is  for 
some function .

Θ(g(n))
g(n)

How do we find this function?

No easy answer!

We try to design algorithms which are as good as possible 
and when we feel that we can not improve more, we try to 
prove the matching lower bound.
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Matrix Multiplication
Assume that we have two 
square -matrices 

 and  



The product of  and  is the 
-matrix 

 with entries 
 

(n × n)
A = (aij)1≤i,j≤n
B = (bij)1≤i,j≤n

A B
(n × n)
C = (cij)1≤i,j≤n

cij =
n

∑
k=1

aikbkj

row  i

column  j

cij =

row  i

column  j

×ai1 ai2 ain…

b1j
b2j

bnj

⋮
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 for j = 1 to n do 
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A straightforward approach
Compute the sum of pairwise products  for each entry  of .


We have  entries, and  pairwise products for each entry. 

aik ⋅ bkj cij C

n2 n

 for i = 1 to n do 
 for j = 1 to n do 

cij = 0
 for k = 1 to n do 

cij = cij + aik + bkj

 return C = (cij)1≤i, j≤n

Matrix-Multiply (A, B)

Running time: Θ(n3)
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A = (A11 A12
A21 A22) B = (B11 B12

B21 B22)
We can write  as:C

(C11 C12
C21 C22) = (A11 A12

A21 A22) × (B11 B12
B21 B22)

= (A11 ⋅ B11 + A12 ⋅ B21 A11 ⋅ B12 + A12 ⋅ B22
A21 ⋅ B11 + A22 ⋅ B21 A21 ⋅ B12 + A22 ⋅ B22)

We will assume from now on  
that  for some .n = 2k k
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Pictorially
Suppose we divide our matrices  and  as follows:A B

row  i

column  j

cij = ×ai1 ai2 ain…
b1j

b2j

bnj

⋮

A11

A21

A12

A22

B11 B12

B21 B22

cij =
n

∑
k=1

aikbkj =
n/2

∑
k=1

aikbkj +
n

∑
n/2+1

aikbkj

Suppose  and i ≤ n /2 j > n /2

⏟∈ A11 ⋅ B12 ⏟∈ A12 ⋅ B22



The D&C algorithm

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do 

return c11

Partition A = (A11 A12
A21 A22)  and  B = (B11 B12

B21 B22)
Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)

Matrix-Multiply-DC (A12, B22)

return C

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +
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Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do 

return c11

Partition A = (A11 A12
A21 A22)  and  B = (B11 B12

B21 B22)

Θ(1)

Θ(1)
CLRS pp 82-83 

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

addition:  Θ(n2)

8T(n/2)



Running Time

Recurrence relation: For some constant c, 


T(n) = {8T(n/2) + cn2,  when n > 1.
c,  when n = 1.



The Master Theorem
The Master Theorem is a very general theorem for solving 
recurrence relations.


Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg="></latexit>
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A whole in the water

A Greek idiom that means that despite trying, we didn’t 
manage to achieve anything useful.

For Matrix-Multiply-DC,  and , we get α = 8, b = 2 d = 2 O(n3)

Strassen’s remarkable algorithm  
to the rescue (next lecture)


