
Algorithms and Data Structures
Upper and Lower Bounds for Sorting, Matrix

Multiplication

Worst-case Running Times,

Upper Bounds

Recurrence relation:

If we solve the recurrence
relation we obtain

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

T(n) = O(n lg n)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i

q=(i+j)/2

Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge(Aleft , Aright)

To be exactly precise

Recurrence relation: For some constant c,

T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn, when n > 2.
T(2) ≤ c, otherwise.

How do we solve this
recurrence relation?

How do we solve this
recurrence relation?

How do we solve this
recurrence relation?

We can use the  
Master Theorem!

The Master Theorem
The Master Theorem is a very general theorem for solving
recurrence relations.

The Master Theorem
The Master Theorem is a very general theorem for solving
recurrence relations.

Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

The Master Theorem
The Master Theorem is a very general theorem for solving
recurrence relations.

Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

Example: For MergeSort, and , we get α = b = 2 d = 1 O(n log n)

How do we solve this
recurrence relation?

We can use the  
Master Theorem!

How do we solve this
recurrence relation?

How do we solve this
recurrence relation?

Wait a minute John! 
This is ADS, not IADS.

How do we solve this
recurrence relation?

How do we solve this
recurrence relation?

Ah, that’s right!

How do we solve
recurrence relations?

How do we solve
recurrence relations?

Two main techniques:

How do we solve
recurrence relations?

Two main techniques:

“Guess and verify”: We guess the solution, and verify that
it works after substituting in the recurrence relation. Often
the argument is by induction on . n

How do we solve
recurrence relations?

Two main techniques:

“Guess and verify”: We guess the solution, and verify that
it works after substituting in the recurrence relation. Often
the argument is by induction on . n

“Unrolling the recursion”: Figure out the solution for the
first few levels, and then identifying a pattern. In the end
we sum the solutions over all the levels. Often also called
the method of “recursion trees”.

Let’s use the “guess and verify”
technique on this recurrence relation

Recurrence relation: For some constant c,

T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn, when n > 2.
T(2) ≤ c, otherwise.

Let’s use the “guess and verify”
technique on this recurrence relation

Recurrence relation: For some constant c,

T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn, when n > 2.
T(2) ≤ c, otherwise.

Let’s consider the simpler version:

T(n) = {2T(n/2) + cn, when n > 2.
T(2) ≤ c, otherwise.

Let’s use the “guess and verify”
technique on this recurrence relation

Let’s use the “guess and verify”
technique on this recurrence relation
For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .n = 2 T(2) ≤ c ≤ 2c = c ⋅ 2 log2 2

For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .n = 2 T(2) ≤ c ≤ 2c = c ⋅ 2 log2 2

For , we have . 
.

n = 4 T(4) = 2T(2) + 4c ≤ 2c + 4c = 6c
4c log2 4 = 8c > 6c

For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .n = 2 T(2) ≤ c ≤ 2c = c ⋅ 2 log2 2

For , we have . 
.

n = 4 T(4) = 2T(2) + 4c ≤ 2c + 4c = 6c
4c log2 4 = 8c > 6c

For , we have . 
.

n = 8 T(8) = 2T(4) + 8c ≤ 12c + 8c = 20c
8c log2 8 = 24c > 20c

For simplicity, assume for some integer .n = 2k k

Let’s use the “guess and verify”
technique on this recurrence relation

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .n = 2 T(2) ≤ c ≤ 2c = c ⋅ 2 log2 2

For , we have . 
.

n = 4 T(4) = 2T(2) + 4c ≤ 2c + 4c = 6c
4c log2 4 = 8c > 6c

For , we have . 
.

n = 8 T(8) = 2T(4) + 8c ≤ 12c + 8c = 20c
8c log2 8 = 24c > 20c

…

For simplicity, assume for some integer .n = 2k k

Proof by Induction

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

For simplicity, assume for some integer .n = 2k k

Proof by Induction

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

For simplicity, assume for some integer .n = 2k k

Proof by Induction

We guess that: for all T(n) ≤ cn log2 n n ≥ 2.

It remains to prove that our guess was correct.

For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m

For simplicity, assume for some integer .n = 2k k

Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

T(2m) = 2T(2m−1) + c ⋅ 2m ≤ 2c ⋅ 2m−1 ⋅ log2 2m−1 + c ⋅ 2m

= c ⋅ 2m log2 2m − c ⋅ 2m log2 2 + c ⋅ 2m = c ⋅ 2m log2 m − c ⋅ 2m + c ⋅ 2m

= c ⋅ 2m log2 2m

Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

T(2m) = 2T(2m−1) + c ⋅ 2m ≤ 2c ⋅ 2m−1 ⋅ log2 2m−1 + c ⋅ 2m

= c ⋅ 2m log2 2m − c ⋅ 2m log2 2 + c ⋅ 2m = c ⋅ 2m log2 m − c ⋅ 2m + c ⋅ 2m

= c ⋅ 2m log2 2m

recurrence

Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

T(2m) = 2T(2m−1) + c ⋅ 2m ≤ 2c ⋅ 2m−1 ⋅ log2 2m−1 + c ⋅ 2m

= c ⋅ 2m log2 2m − c ⋅ 2m log2 2 + c ⋅ 2m = c ⋅ 2m log2 m − c ⋅ 2m + c ⋅ 2m

= c ⋅ 2m log2 2m

recurrence Ind. Hyp.

Proof by Induction
For , we have .  
(Base Case)

n = 2 T(2) ≤ c ≤ 2c = cn log2 n

Assume that holds for
. 

(Induction Hypothesis)

T(2m−1) ≤ c ⋅ 2m−1 ⋅ log2 2m−1

n = 2m−1

We will prove that holds for .T(2m) ≤ c ⋅ 2m ⋅ log2 2m n = 2m−1

T(2m) = 2T(2m−1) + c ⋅ 2m ≤ 2c ⋅ 2m−1 ⋅ log2 2m−1 + c ⋅ 2m

= c ⋅ 2m log2 2m − c ⋅ 2m log2 2 + c ⋅ 2m = c ⋅ 2m log2 m − c ⋅ 2m + c ⋅ 2m

= c ⋅ 2m log2 2m

recurrence Ind. Hyp.

logarithm property

Let’s use the “unrolling” technique
on this recurrence relation

Recurrence relation: For some constant c,

T(n) = {T(⌊n/2⌋) + T(⌈n/2⌉) + cn, when n > 2.
T(2) ≤ c, otherwise.

Let’s consider the simpler version:

T(n) = {2T(n/2) + cn, when n > 2.
T(2) ≤ c, otherwise.

Solving the Mergesort recursion

Solving the Mergesort recursion
For simplicity, assume for some integer .n = 2k k

Solving the Mergesort recursion
For simplicity, assume for some integer .n = 2k k
First iteration: Price of plus the cost of two subproblems of size .cn n /2

cn

T(n /2) T(n /2)

Solving the Mergesort recursion
For simplicity, assume for some integer .n = 2k k
First iteration: Price of plus the cost of two subproblems of size .cn n /2

cn

T(n /2) T(n /2)

Second iteration: Price of for each subproblem,  
plus the cost of two subproblems of size

c ⋅ n /2
n /4

cn

c ⋅ n /2 c ⋅ n /2

T(n /4) T(n /4) T(n /4) T(n /4)

Solving the Mergesort recursion
In total, there will be + 1 levels (input halved every time).

Level 0 has cost =

Level 1 has cost = =

Level 2 has cost = =

Level has cost = =

The last level has cost

logn

C0(n) cn

C1(n) 2c ⋅ n/2 cn

C2(n) 4c ⋅ n/4 cn

j Cj(n) 2jc ⋅ n/2j cn

cn

Solving the Mergesort recursion
In total, there will be + 1 levels (input halved every time).

Level 0 has cost =

Level 1 has cost = =

Level 2 has cost = =

Level has cost = =

The last level has cost

logn

C0(n) cn

C1(n) 2c ⋅ n/2 cn

C2(n) 4c ⋅ n/4 cn

j Cj(n) 2jc ⋅ n/2j cn

cn

First few levels

Solving the Mergesort recursion
In total, there will be + 1 levels (input halved every time).

Level 0 has cost =

Level 1 has cost = =

Level 2 has cost = =

Level has cost = =

The last level has cost

logn

C0(n) cn

C1(n) 2c ⋅ n/2 cn

C2(n) 4c ⋅ n/4 cn

j Cj(n) 2jc ⋅ n/2j cn

cn

First few levels

Identifying a pattern

Solving the Mergesort recursion

Solving the Mergesort recursion

Recurrence relation:

T(n) =
log n+1

∑
j=1

Cj(n) + cn =
log n+1

∑
j=1

cn + cn

Solving the Mergesort recursion

Recurrence relation:

T(n) =
log n+1

∑
j=1

Cj(n) + cn =
log n+1

∑
j=1

cn + cn

Sum the solutions

Solving the Mergesort recursion

Recurrence relation:

The overall running time is . 

O(n log n)

T(n) =
log n+1

∑
j=1

Cj(n) + cn =
log n+1

∑
j=1

cn + cn

Sum the solutions

Guess and verify vs
unrolling

Guess and verify vs
unrolling

“Unrolling” is not really a formal proof technique.

Guess and verify vs
unrolling

“Unrolling” is not really a formal proof technique.

“Identifying a pattern” is informal.

Guess and verify vs
unrolling

“Unrolling” is not really a formal proof technique.

“Identifying a pattern” is informal.

It helps us figure out what to “guess”.

Guess and verify vs
unrolling

“Unrolling” is not really a formal proof technique.

“Identifying a pattern” is informal.

It helps us figure out what to “guess”.

Then we can “verify”.

Guess and verify vs
unrolling

“Unrolling” is not really a formal proof technique.

“Identifying a pattern” is informal.

It helps us figure out what to “guess”.

Then we can “verify”.

For a formal proof, those techniques could be used
together.

The Quicksort algorithm

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

The Quicksort algorithm

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

 T(n) ≤ T(n1) + T(n2) + cn

Running time of Quicksort

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n) + cn

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When , the running time is the same as Mergesort.n1 = n2

Running time of Quicksort

Mergesort: T(n) ≤ 2T(n) + cn

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When , the running time is the same as Mergesort.n1 = n2

What is the worst possible running time?

“Unrolling”

“Unrolling”

First iteration: Price of plus the cost of two subproblems of size and cn n − 1 0.

cn

T(n − 1) T(0)

“Unrolling”

First iteration: Price of plus the cost of two subproblems of size and cn n − 1 0.

cn

T(n − 1) T(0)

Second iteration: Price of , plus the cost of two subproblems of size and .c(n − 1) n − 2 0

cn

c(n − 1) 0

T(n − 2) T(0)

Solving the Quicksort recursion
How many levels do we have in total?

“Unrolling”

First iteration: Price of plus the cost of two subproblems of size and cn n − 1 0.

cn

T(n − 1) T(0)

Second iteration: Price of , plus the cost of two subproblems of size and .c(n − 1) n − 2 0

cn

c(n − 1) 0

T(n − 2) T(0)

Solving the Quicksort recursion
How many levels do we have in total? levels.

Level 0 has cost =

Level 1 has cost =

Level 2 has cost =

Level has cost =

The last level has cost

n

C0(n) cn

C1(n) c(n − 1)

C2(n) c(n − 2)

j Cj(n) c(n − j)

c

Solving the Quicksort recursion

Solving the Quicksort recursion

Recurrence relation:

T(n) =
n−1

∑
j=1

Cj(n) = c(n + n − 1 + n − 2 + … + 1)

= c
n(n + 1)

2
≤ cn2

Solving the Quicksort recursion

Recurrence relation:

The overall running time is . 

O(n2)

T(n) =
n−1

∑
j=1

Cj(n) = c(n + n − 1 + n − 2 + … + 1)

= c
n(n + 1)

2
≤ cn2

Lower bound for Quicksort

Lower bound for Quicksort

Is our analysis tight enough? Could it be that there is a
better analysis that shows a running time?o(n2)

Lower bound for Quicksort

Is our analysis tight enough? Could it be that there is a
better analysis that shows a running time?o(n2)

Can we show a lower bound of on the running time of
Quicksort?

Ω(n2)

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)

Lower bound for Quicksort

Is your analysis tight enough? Could it be that there is a
better analysis that shows a running time?o(n2)

Can we show a lower bound of on the running time of
Quicksort?

Ω(n2)

Lower bound for Quicksort

Is your analysis tight enough? Could it be that there is a
better analysis that shows a running time?o(n2)

Can we show a lower bound of on the running time of
Quicksort?

Ω(n2)

Q: Can you think of an input where Quicksort takes time ?Ω(n2)

Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)

Upper and Lower (Worst-
Case) Bounds for algorithms
Upper Bound : On any possible input to the
problem, our algorithm will take time (at most) .

Lower Bound : There exists at least one input to the
problem, on which our algorithm will take time (at least)

.

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)

Upper and Lower (Worst-
Case) Bounds for problems

Upper and Lower (Worst-
Case) Bounds for problems

Upper Bound : There exists an algorithm which, on
any possible input to the problem, takes time (at most)

.

O(g1(n))

O(g1(n))

Upper and Lower (Worst-
Case) Bounds for problems

Upper Bound : There exists an algorithm which, on
any possible input to the problem, takes time (at most)

.

O(g1(n))

O(g1(n))

Lower Bound : For any algorithm, there exists at
least one input to the problem, on which the algorithm will
take time (at least) .

Ω(g2(n))

Ω(g2(n))

Upper and Lower (Worst-
Case) Bounds for problems

Upper Bound : There exists an algorithm which, on
any possible input to the problem, takes time (at most)

.

O(g1(n))

O(g1(n))

Lower Bound : For any algorithm, there exists at
least one input to the problem, on which the algorithm will
take time (at least) .

Ω(g2(n))

Ω(g2(n))

When , we say that our running time analysis
is tight, and we have fully understood the (asymptotic,
worst-case) running time of the problem.

g1(n) = g2(n)

For us here concretely

For us here concretely

Upper Bound : We have identified an algorithm
(Mergesort) that has worst-case running time .

O(n log n)
O(n log n)

For us here concretely

Upper Bound : We have identified an algorithm
(Mergesort) that has worst-case running time .

O(n log n)
O(n log n)

Lower Bound : We need to prove that every
algorithm has worst-case running time .

Ω(n log n)
Ω(n log n)

For us here concretely

Upper Bound : We have identified an algorithm
(Mergesort) that has worst-case running time .

O(n log n)
O(n log n)

Lower Bound : We need to prove that every
algorithm has worst-case running time .

Ω(n log n)
Ω(n log n)

In other words, we will prove that there is no algorithm that
is asymptotically better than Mergesort.

Lower bound for sorting

Lower bound for sorting

Is a1 < a2 ?

Lower bound for sorting

Is a1 < a2 ?

Is a2 < a3 ?

Yes

Lower bound for sorting

Is a1 < a2 ?

Is a2 < a3 ?

a1 a2 a3

Yes

Lower bound for sorting

Is a1 < a2 ?

Is a2 < a3 ?

Is a1 < a3 ? a1 a2 a3

Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a2 < a3 ?

Is a1 < a3 ? a1 a2 a3

a1 a3 a2

Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a2 < a3 ?

Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a2 < a3 ? Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

No

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a2 < a3 ? Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

a2 a3 a1

No

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a2 < a3 ? Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

a3 a2 a1 a2 a3 a1

No

Lower bound for sorting

Lower bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

Lower bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

The decision tree has leavesn!

Lower bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

The decision tree has leavesn!

A leaf is a permutation of {a1, a2, … , an}

Lower bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

The decision tree has leavesn!

A leaf is a permutation of {a1, a2, … , an}

Every possible permutation can appear as a leaf, since
every possible permutation is a valid output.

Lower bound for sorting

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d
Think about it at home! Try to prove it using induction.

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

Think about it at home! Try to prove it using induction.

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that log2(n!) = Ω(n log n)

Think about it at home! Try to prove it using induction.

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that log2(n!) = Ω(n log n)

 log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)

Think about it at home! Try to prove it using induction.

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that log2(n!) = Ω(n log n)

 log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)

Think about it at home! Try to prove it using induction.

 = log2(1) + log2(2) +…+ log2(n)

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that log2(n!) = Ω(n log n)

 log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)

Think about it at home! Try to prove it using induction.

 = log2(1) + log2(2) +…+ log2(n)
 (half)≥ log2(n/2) +…+ log2(n)

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.d 2d

Therefore the minimum number of comparisons is log2(n!)

We claim that log2(n!) = Ω(n log n)

 log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)

Think about it at home! Try to prove it using induction.

 = log2(1) + log2(2) +…+ log2(n)
 (half)≥ log2(n/2) +…+ log2(n)
 = ≥ log2(n/2) +…+ log2(n/2) (n/2) log2(n/2)

Quick Note

Quick Note
This lower bound is often referred to as a lower bound for
“comparison based sorting”.

Quick Note
This lower bound is often referred to as a lower bound for
“comparison based sorting”.

But it is indeed a general sorting lower bound, as in the
general case, the order between elements is defined via
comparisons between them.

Quick Note
This lower bound is often referred to as a lower bound for
“comparison based sorting”.

But it is indeed a general sorting lower bound, as in the
general case, the order between elements is defined via
comparisons between them.

If our array has some specific properties, then we can sort in
 time, using algorithms that do not apply to the general

problem.
O(n)

Quick Note
This lower bound is often referred to as a lower bound for
“comparison based sorting”.

But it is indeed a general sorting lower bound, as in the
general case, the order between elements is defined via
comparisons between them.

If our array has some specific properties, then we can sort in
 time, using algorithms that do not apply to the general

problem.
O(n)

e.g., CountingSort

Proving lower bounds

Proving lower bounds
Consider some criterion A that we would like to minimise (could be
running time, memory, etc).

Proving lower bounds
Consider some criterion A that we would like to minimise (could be
running time, memory, etc).

We want to find the best algorithm (asymptotically) for criterion A.

Proving lower bounds
Consider some criterion A that we would like to minimise (could be
running time, memory, etc).

We want to find the best algorithm (asymptotically) for criterion A.

The best possible achievable performance is for some
function .

Θ(g(n))
g(n)

Proving lower bounds
Consider some criterion A that we would like to minimise (could be
running time, memory, etc).

We want to find the best algorithm (asymptotically) for criterion A.

The best possible achievable performance is for some
function .

Θ(g(n))
g(n)

Upper bound: We construct an algorithm that has performance
 for criterion A.O(g(n))

Proving lower bounds
Consider some criterion A that we would like to minimise (could be
running time, memory, etc).

We want to find the best algorithm (asymptotically) for criterion A.

The best possible achievable performance is for some
function .

Θ(g(n))
g(n)

Upper bound: We construct an algorithm that has performance
 for criterion A.O(g(n))

Lower bound: We show that for any algorithm, the performance for
criterion A is .Ω(g(n))

Proving lower bounds

The best possible achievable performance is for
some function .

Θ(g(n))
g(n)

Proving lower bounds

The best possible achievable performance is for
some function .

Θ(g(n))
g(n)

How do we find this function?

Proving lower bounds

The best possible achievable performance is for
some function .

Θ(g(n))
g(n)

How do we find this function?

No easy answer!

Proving lower bounds

The best possible achievable performance is for
some function .

Θ(g(n))
g(n)

How do we find this function?

No easy answer!

We try to design algorithms which are as good as possible
and when we feel that we can not improve more, we try to
prove the matching lower bound.

Matrix Multiplication

Matrix Multiplication
Assume that we have two
square -matrices 

 and

The product of and is the
-matrix

 with entries 
 

(n × n)
A = (aij)1≤i,j≤n
B = (bij)1≤i,j≤n

A B
(n × n)
C = (cij)1≤i,j≤n

cij =
n

∑
k=1

aikbkj

row i

column j

cij =

row i

column j

×ai1 ai2 ain…

b1j
b2j

bnj

⋮

A straightforward approach
Compute the sum of pairwise products for each entry of .

We have entries, and pairwise products for each entry.

aik ⋅ bkj cij C

n2 n

A straightforward approach
Compute the sum of pairwise products for each entry of .

We have entries, and pairwise products for each entry.

aik ⋅ bkj cij C

n2 n

 for i = 1 to n do
 for j = 1 to n do

cij = 0
 for k = 1 to n do

cij = cij + aik + bkj

 return C = (cij)1≤i, j≤n

Matrix-Multiply (A, B)

A straightforward approach
Compute the sum of pairwise products for each entry of .

We have entries, and pairwise products for each entry.

aik ⋅ bkj cij C

n2 n

 for i = 1 to n do
 for j = 1 to n do

cij = 0
 for k = 1 to n do

cij = cij + aik + bkj

 return C = (cij)1≤i, j≤n

Matrix-Multiply (A, B)

Running time: Θ(n3)

A naive D&C approach
Suppose we divide our matrices and as follows:A B

A = (A11 A12
A21 A22) B = (B11 B12

B21 B22)
We can write as:C

(C11 C12
C21 C22) = (A11 A12

A21 A22) × (B11 B12
B21 B22)

= (A11 ⋅ B11 + A12 ⋅ B21 A11 ⋅ B12 + A12 ⋅ B22
A21 ⋅ B11 + A22 ⋅ B21 A21 ⋅ B12 + A22 ⋅ B22)

A naive D&C approach
Suppose we divide our matrices and as follows:A B

A = (A11 A12
A21 A22) B = (B11 B12

B21 B22)
We can write as:C

(C11 C12
C21 C22) = (A11 A12

A21 A22) × (B11 B12
B21 B22)

= (A11 ⋅ B11 + A12 ⋅ B21 A11 ⋅ B12 + A12 ⋅ B22
A21 ⋅ B11 + A22 ⋅ B21 A21 ⋅ B12 + A22 ⋅ B22)

We will assume from now on  
that for some .n = 2k k

Pictorially
Suppose we divide our matrices and as follows:A B

row i

column j

cij = ×ai1 ai2 ain…
b1j

b2j

bnj

⋮

A11

A21

A12

A22

B11 B12

B21 B22

cij =
n

∑
k=1

aikbkj =
n/2

∑
k=1

aikbkj +
n

∑
n/2+1

aikbkj

Suppose and i ≤ n /2 j > n /2

Pictorially
Suppose we divide our matrices and as follows:A B

row i

column j

cij = ×ai1 ai2 ain…
b1j

b2j

bnj

⋮

A11

A21

A12

A22

B11 B12

B21 B22

cij =
n

∑
k=1

aikbkj =
n/2

∑
k=1

aikbkj +
n

∑
n/2+1

aikbkj

Suppose and i ≤ n /2 j > n /2

⏟∈ A11 ⋅ B12

Pictorially
Suppose we divide our matrices and as follows:A B

row i

column j

cij = ×ai1 ai2 ain…
b1j

b2j

bnj

⋮

A11

A21

A12

A22

B11 B12

B21 B22

cij =
n

∑
k=1

aikbkj =
n/2

∑
k=1

aikbkj +
n

∑
n/2+1

aikbkj

Suppose and i ≤ n /2 j > n /2

⏟∈ A11 ⋅ B12 ⏟∈ A12 ⋅ B22

The D&C algorithm

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)
Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)

Matrix-Multiply-DC (A12, B22)

return C

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)

Θ(1)

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)

Θ(1)

Θ(1)
CLRS pp 82-83

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)

Θ(1)

Θ(1)
CLRS pp 82-83

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

addition: Θ(n2)

Running Time

c11 = a11 ⋅ b11

Matrix-Multiply-DC (A, B)
 if n = 1, do

return c11

Partition A = (A11 A12
A21 A22) and B = (B11 B12

B21 B22)

Θ(1)

Θ(1)
CLRS pp 82-83

return C

Matrix-Multiply-DC C11 = (A11, B11) Matrix-Multiply-DC (A12, B21)
Matrix-Multiply-DC (A12, B22)

+

Matrix-Multiply-DC C12 = (A11, B12) +

Matrix-Multiply-DC (A22, B21)Matrix-Multiply-DC C21 = (A21, B11) +

Matrix-Multiply-DC (A22, B22)Matrix-Multiply-DC C22 = (A21, B12) +

addition: Θ(n2)

8T(n/2)

Running Time

Recurrence relation: For some constant c,

T(n) = {8T(n/2) + cn2, when n > 1.
c, when n = 1.

The Master Theorem
The Master Theorem is a very general theorem for solving
recurrence relations.

Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

The Master Theorem
The Master Theorem is a very general theorem for solving
recurrence relations.

Suppose T (n)  ↵T (dn/be) +O(nd)

for some constants ↵ > 0, b > 1 and d � 0.

Then, T (n) =

8
><

>:

O(nd), if d > logb ↵

O(nd logb n), if d = logb ↵

O(nlogb ↵), if d < logb ↵
<latexit sha1_base64="EpVanqj8qIzvyJ8BdnQKMJnS+Eg=">AAADR3icbVJNb9MwGHYyPkb46uDI5RUVqBNVSQYSHFg1wYUbQ7TbpLpUjuOk1hw72A6iivLvuHDlxl/gwgGEOOK0maDrfHr8vO/zvB9640JwY8Pwm+dvXbp85er2teD6jZu3bnd27hwZVWrKxlQJpU9iYpjgko0tt4KdFJqRPBbsOD591cSPPzJtuJIjuyjYNCeZ5CmnxDpqtuNNH2LLPtnqXVkUyjCoYdSTu4AF+wCYiGJOYOQ+qe1hQRkXIB/HgHUDsebZ3O7CI3jTk+8TJ8JB65YqDUblDKiSxhJpjTNu7YYQ9gEDQAzDCFb5QGTiMhLAmasbDpzTP7PRnMl+jRtN09s+jlnGZUXd2KYOVrX70CYDT5dGQzeCymZxW9W5LRPPWLmp2L9QUa2R9absxboswEwmZ70Fs043HITLB5sgakEXte9w1vmKE0XLnElLBTFmEoWFnVZEW04FqwNcGlYQekoyNnFQkpyZabW8gxoeOCaBZvepkhaW7P+KiuTGLPLYZebEzs35WENeFJuUNn0+rbgsSsskXRVKSwFWQXNUkHDNqBULBwjV3PUKdE40odadXrOE6PzIm+BobxA9Gey9fdo9eNmuYxvdQ/dRD0XoGTpAr9EhGiPqffa+ez+9X/4X/4f/2/+zSvW9VnMXrb0t7y8ftgKp</latexit>

For Matrix-Multiply-DC, and , we get α = 8, b = 2 d = 2 O(n3)

A whole in the water

A Greek idiom that means that despite trying, we didn’t
manage to achieve anything useful.

For Matrix-Multiply-DC, and , we get α = 8, b = 2 d = 2 O(n3)

A whole in the water

A Greek idiom that means that despite trying, we didn’t
manage to achieve anything useful.

For Matrix-Multiply-DC, and , we get α = 8, b = 2 d = 2 O(n3)

A whole in the water

A Greek idiom that means that despite trying, we didn’t
manage to achieve anything useful.

For Matrix-Multiply-DC, and , we get α = 8, b = 2 d = 2 O(n3)

Strassen’s remarkable algorithm  
to the rescue (next lecture)

