Algorithms and Data Structures

Upper and Lower Bounds for Sorting, Matrix Multiplication

Matrix Multiplication

Assume that we have two square $(n \times n)$ -matrices $A = (a_{ij})_{1 \le i,j \le n}$ and $B = (b_{ij})_{1 \le i,j \le n}$

The product of *A* and *B* is the $(n \times n)$ -matrix $C = (c_{ij})_{1 \le i,j \le n}$ with entries

Matrix Multiplication

Straightforward approach (3 nested loops): $O(n^3)$.

Naive Divide & Conquer approach: $O(n^3)$

Matrix Multiplication

Straightforward approach (3 nested loops): $O(n^3)$.

Naive Divide & Conquer approach: $O(n^3)$

Can we do better than that?

Straightforward approach: Two multiplications and one subtraction (addition).

Straightforward approach: Two multiplications and one subtraction (addition).

We could also use the identity $x^2 - y^2 = (x + y) \cdot (x - y)$: One multiplication and two additions.

Straightforward approach: Two multiplications and one subtraction (addition).

We could also use the identity $x^2 - y^2 = (x + y) \cdot (x - y)$: One multiplication and two additions.

For scalars like x and y, multiplications and additions cost the same.

Straightforward approach: Two multiplications and one subtraction (addition).

We could also use the identity $x^2 - y^2 = (x + y) \cdot (x - y)$: One multiplication and two additions.

For scalars like *x* and *y*, multiplications and additions cost the same.

For (possibly large matrices), multiplications are more expensive!

Divide and Conquer...

Suppose we divide our matrices A and B as follows:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

We can write *C* as:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

 $C_{11} = P_1 + P_4 - P_5 + P_7$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

$$C_{11} = P_1 + P_4 - P_5 + P_7 \qquad C_{12} = P_3 + P_5$$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

$$C_{11} = P_1 + P_4 - P_5 + P_7$$
 $C_{12} = P_3 + P_5$
 $C_{21} = P_2 + P_4$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

$$C_{11} = P_1 + P_4 - P_5 + P_7 \qquad C_{12} = P_3 + P_5$$
$$C_{21} = P_2 + P_4 \qquad C_{22} = P_1 + P_3 - P_2 + P_6$$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

$$C_{11} = P_1 + P_4 - P_5 + P_7$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

$$P_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

 $\begin{aligned} P_{1} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_{2} &= (A_{21} + A_{22}) \cdot B_{11} \\ P_{3} &= A_{11} \cdot (B_{12} - B_{22}) \\ P_{4} &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_{5} &= (A_{11} + A_{22}) \cdot B_{22} \\ P_{6} &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_{7} &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{aligned} \qquad \begin{aligned} C_{11} &= P_{1} + P_{4} - P_{5} + P_{7} \\ C_{11} &= C_{12} \\ A_{21} &= \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \\ = \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{aligned}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \end{split}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{11} + P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $(B_{11} - B_{12})$ $P_{2} = \begin{pmatrix} A_{11} + A_{12} \\ A_{21} - A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} - B_{12} \\ B_{21} - B_{22} \end{pmatrix}$ $= \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

$$P_{1} + P_{4} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{12} + A_{12} +$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

$$P_{1} + P_{4} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{11} + A_{12} +$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \end{split}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = C_{12}$ $A_{11} \cdot A_{12}$ $A_{11} \cdot A_{12}$ $A_{21} \cdot B_{11} + A_{12} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$ $P_{6} = (A_{11} - A_{22}) \cdot (B_{21} + B_{22})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $A_{11} \cdot B_{12}$ $A_{11} \cdot B_{12}$ $A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \end{split}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$C_{11} = A_{11} + A_{12} + A_{22} + B_{22}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{2} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

$$P_{1} + P_{4} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21}$$

$$P_{1} + P_{4} - P_{5} = A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$C_{11} = A_{11} + A_{12} + A_{22} + B_{22}$$

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21}) = -A_{2} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$P_{5} = (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

$$P_{1} + P_{4} = A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21}$$

$$P_{1} + P_{4} - P_{5} = A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{12} + A_{12} +$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{11} + A_{12} +$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{23} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{13} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{11} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = C_{12}$ $A_{11} \cdot A_{12}$ $A_{11} \cdot A_{12}$ $A_{21} \cdot B_{11} + A_{12} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$ $P_{6} = (A_{11} - A_{22}) \cdot (B_{21} + B_{22})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $A_{11} \cdot B_{12}$ $A_{11} \cdot B_{12}$ $A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{23} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{13} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = C_{12}$ $A_{11} \cdot A_{12}$ $A_{11} \cdot A_{12}$ $A_{21} \cdot B_{11} + A_{12} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$ $P_{6} = (A_{11} - A_{22}) \cdot (B_{21} + B_{22})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $A_{11} \cdot B_{12}$ $A_{11} \cdot B_{12}$ $A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$ $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

Try it at home: Check C_{12}, C_{21} , and C_{22} .

Let's calculate C_{11}

 $P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ $P_{2} = (A_{21} + A_{22}) \cdot B_{11}$ $P_{3} = A_{11} \cdot (B_{12} - B_{22})$ $P_{4} = A_{22} \cdot (-B_{11} + B_{21})$ $P_{5} = (A_{11} + A_{22}) \cdot B_{22}$ $P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$ $P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = A_{11} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1} + P_{4} - P_{5} + P_{7}$ $C_{11} = P_{1} + P_{1}$

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) = -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ P_5 &= (A_{11} + A_{12}) \cdot B_{22} = A_{12} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_1 + P_4 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{22} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} \\ P_1 + P_4 - P_5 &= A_{11} \cdot B_{11} + A_{22} \cdot B_{22} + A_{22} \cdot B_{21} - A_{12} \cdot B_{22} \\ P_1 + P_4 - P_5 + P_7 &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \end{split}$$

How many multiplications do we need?

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{22}) \cdot B_{22}$$

$$P_{6} = (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$C_{11} = P_1 + P_4 - P_5 + P_7 \qquad C_{12} = P_3 + P_5$$
$$C_{21} = P_2 + P_4 \qquad C_{22} = P_1 + P_3 - P_2 + P_6$$

How many multiplications do we need?

$$\begin{split} P_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ P_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ P_4 &= A_{22} \cdot (-B_{11} + B_{21}) \\ P_5 &= (A_{11} + A_{22}) \cdot B_{22} \\ P_6 &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12}) \\ P_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

We have 7 multiplications of $n/2 \times n/2$ matrices.

$$C_{11} = P_1 + P_4 - P_5 + P_7 \qquad C_{12} = P_3 + P_5$$
$$C_{21} = P_2 + P_4 \qquad C_{22} = P_1 + P_3 - P_2 + P_6$$

Recurrence Relation

We have 7 multiplications of $n/2 \times n/2$ matrices.

Recurrence Relation

We have 7 multiplications of $n/2 \times n/2$ matrices.

As before, the additions will take $O(n^2)$ time.
Recurrence Relation

We have 7 multiplications of $n/2 \times n/2$ matrices.

As before, the additions will take $O(n^2)$ time.

$$T(n) = 7T(n/2) + O(n^2)$$

Recurrence Relation

We have 7 multiplications of $n/2 \times n/2$ matrices.

As before, the additions will take $O(n^2)$ time.

$$T(n) = 7T(n/2) + O(n^2)$$

Suppose $T(n) \leq \alpha T(\lceil n/b \rceil) + O(n^d)$ for some constants $\alpha > 0$, b > 1 and $d \ge 0$.

Then,
$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b \alpha \\ O(n^d \log_b n), & \text{if } d = \log_b \alpha \\ O(n^{\log_b \alpha}), & \text{if } d < \log_b \alpha \end{cases}$$

Recurrence Relation

We have 7 multiplications of $n/2 \times n/2$ matrices.

As before, the additions will take $O(n^2)$ time.

$$T(n) = 7T(n/2) + O(n^2)$$
$$T(n) = O(n^{\log_2 7}) = O(n^{2.81})$$

Suppose $T(n) \leq \alpha T(\lceil n/b \rceil) + O(n^d)$ for some constants $\alpha > 0$, b > 1 and $d \geq 0$.

Then,
$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b \alpha \\ O(n^d \log_b n), & \text{if } d = \log_b \alpha \\ O(n^{\log_b \alpha}), & \text{if } d < \log_b \alpha \end{cases}$$

Strassen's method achieves a running time of $O(n^{\log_2 7}) = O(n^{2.81})$

Strassen's method achieves a running time of $O(n^{\log_2 7}) = O(n^{2.81})$

Is this the best we can do? Lower bounds?

Strassen's method achieves a running time of $O(n^{\log_2 7}) = O(n^{2.81})$

Is this the best we can do? Lower bounds?

Obvious lower bound: $\Omega(n^2)$

Strassen's method achieves a running time of $O(n^{\log_2 7}) = O(n^{2.81})$

Is this the best we can do? Lower bounds?

Obvious lower bound: $\Omega(n^2)$

Better upper/lower bounds?

Strassen's method achieves a running time of $O(n^{\log_2 7}) = O(n^{2.81})$

Is this the best we can do? Lower bounds?

Obvious lower bound: $\Omega(n^2)$

Better upper/lower bounds?

Timeline of matrix multiplication exponent

Year	Bound on omega	Authors		
1969	2.8074	Strassen ^[1]		
1978	2.796	Pan ^[10]		
1979	2.780	Bini, Capovani [it], Romani ^[11]		
1981	2.522	Schönhage ^[12]		
1981	2.517	Romani ^[13]		
1981	2.496	Coppersmith, Winograd ^[14]		
1986	2.479	Strassen ^[15]		
1990	2.3755	Coppersmith, Winograd ^[16]		
2010	2.3737	Stothers ^[17]		
2012	2.3729	Williams ^{[18][19]}		
2014	2.3728639	Le Gall ^[20]		
2020	2.3728596	Alman, Williams ^{[21][22]}		
2022	2.371866	Duan, Wu, Zhou ^[23]		
2024	2.371552	Williams, Xu, Xu, and Zhou ^[2]		

Selection

The selection problem

Definition: The i^{th} -order statistic of a set of n (distinct) elements is the i^{th} smallest element.

i.e., the element which is larger than exactly i - 1 other elements.

Selection(A[1,..., n], *i*) Input: A set of *n* (distinct) numbers (in an array A) and a number *i*, with $1 \le i \le n$. Output: The *i*th-order statistic of the set.

The Selection Problem:

Sort the numbers in $O(n \log n)$ time using MergeSort.

Sort the numbers in $O(n \log n)$ time using MergeSort.

Return the i^{th} element of the sorted array.

Sort the numbers in $O(n \log n)$ time using MergeSort.

Return the i^{th} element of the sorted array.

Is sorting an overkill?

Divide and conquer

Split the input into smaller inputs.

Solve the problem for the smaller inputs recursively.

Combine the solutions into a solution for the original problem.

The Partition procedure

Procedure **Partition**(**A**[*i*, ..., *j*])

Choose a pivot element x of A

k = i

For h = i to j do

If $\mathbf{A}[h] < x$

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap A[k] with A[h]

Return k

Running time O(n)

The Partition procedure

Procedure **Partition**(**A**[*i*, ..., *j*])

Cheece a pivet element x of A

k = i

For h = i to j do

If $\mathbf{A}[h] < x$

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap A[k] with A[h]

Return k

Running time O(n)

The Partition procedure (with the pivot element as input)

Procedure Partition(A[i, ..., j], x)

Chapped a nivet aloment r of A

.

k = i

For h = i to j do

If $\mathbf{A}[h] < x$

Swap $\mathbf{A}[k]$ with $\mathbf{A}[h]$ k = k + 1

Swap A[k] with A[h]

Return *k*

Running time O(n)

Using the element x, it divides the array **A** into three parts: **A**[1,..., x - 1], **A**[x] and **A**[x + 1,...,n].

Using the element x, it divides the array **A** into three parts: **A**[1,..., x - 1], **A**[x] and **A**[x + 1,...,n].

Then, we can reduce the search for the i^{th} element to one of the three subarrays.

Using the element x, it divides the array **A** into three parts: **A**[1,..., x - 1], **A**[x] and **A**[x + 1,...,n].

Then, we can reduce the search for the i^{th} element to one of the three subarrays.

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x + 1,...,n] are of (approximately) equal size?

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

We could find the *median* of the array and use that as the value x.

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

We could find the *median* of the array and use that as the value x.

The median is the number that is larger than exactly $\frac{n+1}{2} - 1$ numbers.

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

We could find the *median* of the array and use that as the value x.

The median is the number that is larger than exactly $\frac{n+1}{2} - 1$ numbers.

The median is the [(n + 1)/2]th-order statistic.

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

We could find the *median* of the array and use that as the value x.

The median is the number that is larger than exactly $\frac{n+1}{2} - 1$ numbers.

The median is the [(n + 1)/2]th-order statistic.

What is an algorithm for finding the median?

How can we choose the element *x* appropriately, such that the subarrays A[1,...,x-1] and A[x+1,...,n] are of (approximately) equal size?

We could find the *median* of the array and use that as the value x.

The median is the number that is larger than exactly $\frac{n+1}{2} - 1$ numbers.

The median is the [(n + 1)/2]th-order statistic.

What is an algorithm for finding the median?

Selection(A[1,..., n],(n + 1)/2)

Let's try to do that...

Algorithm Selection(A[1, ..., n], *i*)

$$x = \text{Selection}(\mathbf{A}[1, \dots, n], (n + 1)/2)$$

$$k = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{x})$$

Let's try to do that...

Algorithm Selection(A[1, ..., n], *i*)

Do you see a problem?

 $x = \text{Selection}(\mathbf{A}[1, \dots, n], (n + 1)/2)$ $k = \text{Partition}(\mathbf{A}[1, \dots, n], x)$

Let's try to do that...

Algorithm Selection(A[1, ..., n], *i*)

Do you see a problem?

$$x = \text{Selection}(\mathbf{A}[1, \dots, n], (n + 1)/2)$$

$$k = \text{Partition}(\mathbf{A}[1, \dots, n], x) \qquad \text{Before}$$

Before we conquer, we need to divide!

Are we stuck?

We need to partition the array into two using a good pivot element (*the median*).

Or otherwise the running time of the recursion will be bad!

But to find the median, we need an algorithm for selection!

Are we stuck?

We need to partition the array into two using a good pivot element (something "close" to the median).

Or otherwise the running time of the recursion will be bad!

But to find the median, we need an algorithm for selection!

A good pivot element

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

A good pivot element

		of ensure ensure ensure ensure ensure ensure ensure	S.

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

How do we do that?

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

How do we do that?

Run InsertionSort

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

Find the **median-of-medians**.

Median of medians

and a second formal formal formation and a second formation of the second formation	Manager Manager Manager
	2 2 3

Median of medians

Median of medians

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

Find the **median-of-medians**.

How do we do that?

Split the array **A** into sub-arrays with **5** elements each.

The last one might have fewer elements.

For each one of those, find the *median*.

Find the **median-of-medians**.

How do we do that?

Run Selection

This failed...

Algorithm Selection(A[1, ..., n], i)

$$x = \text{Selection}(\mathbf{A}[1, \dots, n], (n + 1)/2)$$

$$k = \text{Partition}(\mathbf{A}[1, \dots, n], x)$$

...but this won't.

Algorithm Selection(A[1, ..., n], *i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2)

/*Find the median of medians */

 $k = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{X})$ /*Partition the array using **x** as the pivot */

The Selection algorithm

Algorithm Selection(A[1, ..., n], *i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2)

/*Find the median of medians */

k = Partition(A[1, ..., n], x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return xIf i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1, ..., n], i - k)

Zooming in

If i = k, return xIf i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1, ..., n], i - k)

We are looking for the i^{th} -order statistic.

If i = k, then x is the answer - it is larger than k - 1 = i - 1 elements.

If i < k, the answer cannot be in the second part, as then i would be larger than at least k - 1 = i - 1 elements.

We are looking for the third smallest element (i = 3)

And in our case the pivot is in the fourth position, k = 4

We are looking for the third smallest element (i = 3)

And in our case the pivot is in the fourth position, k = 4

Zooming in

If i = k, return xIf i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1, ..., n], i - k)

We are looking for the i^{th} -order statistic.

If i = k, then x is the answer - it is larger than k - 1 elements.

If i < k, the answer cannot be in the second part, as then i would be larger than at least k - 1 elements.

For the same reason, if i > k, the answer cannot be in the first part.

Algorithm Selection(A[1, ..., n], *i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2)

/*Find the median of medians */

k = Partition(A[1, ..., n], x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return xIf i < k, return **Selection**(A[1,..., k - 1], i) If i > k, return **Selection**(A[k + 1, ..., n], i - k)

Algorithm Selection(A[1, ..., n], *i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2)

/*Find the median of medians */

k = Partition(A[1, ..., n], x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return xIf i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1, ..., n], i - k)

Algorithm Selection(A[1, ..., n], *i*)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

 $x = \text{Selection}(A[m_1, ..., m_{n/5}], (n/5 + 1)/2)$

/*Find the median of medians */

k = Partition(A[1, ..., n], x) /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return xIf i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1,..., n], i - k)

Algorithm Selection ($A[1, \ldots, n], i$)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. O(n)Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2) T(n/5)

/*Find the median of medians */

 $k = \text{Partition}(\mathbf{A}[1, \dots, n], x)$ /*Partition the array using x as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return x If i < k, return Selection(A[1,..., k - 1], i) If i > k, return Selection(A[k + 1, ..., n], i - k)

Algorithm Selection ($A[1, \ldots, n], i$)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. O(n)Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2) T(n/5)

/*Find the median of medians */

O(n) $k = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{X})$ /*Partition the array using **x** as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return x

If i < k, return Selection(A[1,..., k - 1], i)

If i > k, return Selection(A[k + 1, ..., n], i - k)

Algorithm Selection ($A[1, \ldots, n], i$)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. O(n)Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2) T(n/5)

/*Find the median of medians */

O(n) $k = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{X})$ /*Partition the array using **x** as the pivot */

k-1 is the number of elements in the lower subarray.

If i = k, return x O(1)

If i < k, return Selection(A[1,..., k - 1], i)

If i > k, return Selection(A[k + 1, ..., n], i - k)

Algorithm Selection ($A[1, \ldots, n], i$)

Split the array **A** into n/5 arrays of size 5 For each subarray **A**_i, find the *median*. O(n)Let $m_1, m_2, \ldots, m_{n/5}$ be those medians

x =Selection(A[$m_1, ..., m_{n/5}$],(n/5 + 1)/2) T(n/5)

/*Find the median of medians */

O(n) $k = \text{Partition}(\mathbf{A}[1, \dots, n], \mathbf{X})$ /*Partition the array using **x** as the pivot */

k-1 is the number of elements in the lower subarray.

O(1)

 $T(|S_{\max}|)$

If i = k, return x

If i < k, return Selection(A[1,..., k - 1], i)

If i > k, return Selection(A[k + 1, ..., n], i - k)

 $\mathsf{T}(n) \le \mathsf{T}(n/5) + \mathsf{T}(|S_{\max}|) + \mathsf{b}n$

 $T(n) \le T(n/5) + T(|S_{\max}|) + bn$

Before we proceed, we have to bound $|S_{\text{max}}|$.

 \boldsymbol{X} is a median of medians.

 \boldsymbol{x} is a median of medians.

At least (...) subarrays have "baby medians" $\geq \chi$.

 \boldsymbol{x} is a median of medians.

At least *half of the* subarrays have "baby medians" $\geq \chi$.
and a second for the	Manage Manage Manage
	2 12 12 1

 \boldsymbol{x} is a median of medians.

At least half of the subarrays have "baby medians" $\geq x$.

Each one of these groups has at least (...) elements $> \chi$.

 \boldsymbol{x} is a median of medians.

At least *half of the* subarrays have "baby medians" $\geq x$.

Each one of these groups has at least 3 elements $> \chi$.

Manager Manager Manager Manager Manager	an a	the second second second second second	

 \boldsymbol{x} is a median of medians.

At least *half of the* subarrays have "baby medians" $\geq x$.

Each one of these groups has at least 3 elements $> \chi$.

Because $x \leq$ their "baby median".

Except possibly

 \boldsymbol{x} is a median of medians.

At least half of the subarrays have "baby medians" $\geq x$.

Each one of these groups has at least 3 elements $> \chi$.

Because $\chi \leq$ their "baby median".

Except possibly the group containing *x* and

 \boldsymbol{x} is a median of medians.

At least half of the subarrays have "baby medians" $\geq x$.

Each one of these groups has at least 3 elements $> \chi$.

Because $\chi \leq$ their "baby median".

Except possibly the group containing x and the group that has fewer than 5 elements.

and hand hand hand hand hand hand hand h	Manager Manager	Station Station

What is the total number of elements larger than χ ?

This means that the size of the lower subarray is at most 7n/10 + 6

The size of the lower subarray is at most 7n/10 + 6

The size of the lower subarray is at most 7n/10 + 6

A symmetric argument shows that the size of the upper subarray is at most 7n/10 + 6

The size of the lower subarray is at most 7n/10 + 6

A symmetric argument shows that the size of the upper subarray is at most 7n/10 + 6

Back to the recurrence:

 $T(n) \le T(n/5) + T(|S_{max}|) + bn = T(n/5) + T(7n/10 + 6) + bn$

Let's guess that $T(n) \le cn$, for some constant c.

Let's guess that $T(n) \le cn$, for some constant c.

We get that

 $T(n) \le c(n/5) + c(7n/10 + 6) + bn$ = 9cn/10 +6c+bn = cn + (-cn/10 + 6c + bn)

Let's guess that $T(n) \le cn$, for some constant c.

We get that

 $T(n) \le c(n/5) + c(7n/10 + 6) + bn$ = 9cn/10 +6c+bn = cn + (-cn/10 + 6c + bn)

This is at most c*n* whenever $-cn/10 + 6c + bn \le 0$, or equivalently, when $c \ge 10bn/(n - 60)$.

Let's guess that $T(n) \le cn$, for some constant c.

We get that

 $T(n) \le c(n/5) + c(7n/10 + 6) + bn$ = 9cn/10 +6c+bn = cn + (-cn/10 + 6c + bn)

This is at most c*n* whenever $-cn/10 + 6c + bn \le 0$, or equivalently, when $c \ge 10bn/(n - 60)$.

If $n \ge 120$, then $n/(n - 60) \le 2$ and then, it suffices to have $c \ge 20b$.

We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

Let $a = \max\{T(n) / n , n \le 120\}$ and let $c = \max\{a, 20b\}$.

We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

Let $a = \max\{T(n) / n , n \le 120\}$ and let $c = \max\{a, 20b\}$.

We will prove the statement by induction.

We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

Let $a = \max\{T(n) / n, n \le 120\}$ and let $c = \max\{a, 20b\}$.

We will prove the statement by induction.

Base case: For every $n \le 120$, $T(n) \le max\{T(n) / n, n \le 120\} n$ = $an \le max\{a, 20b\}n = cn$

We want to show that there is some constant c > 0, such that $T(n) \le cn$ for all n > 0.

Let $a = \max\{T(n) / n, n \le 120\}$ and let $c = \max\{a, 20b\}$.

We will prove the statement by induction.

Base case: For every $n \le 120$, $T(n) \le max\{T(n) / n, n \le 120\} n$ = $an \le max\{a, 20b\}n = cn$

Inductive Step: Suppose that it holds for all *n* up to k = 120. Then for n = k + 1, we have $T(n) \le cn + (-cn/10 + 6c + bn)$

This follows from the previous slide and the fact that n > 120 and $c \ge 20b$.