Algorithms and Data Structures Fast Fourier Transform

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

The product is a polynomial C(x) of degree 2n - 2 where the coefficient of the term x^k is

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

The product is a polynomial C(x) of degree 2n - 2 where the coefficient of the term x^k is

$$c_k = \sum_{(i,j):i+j=k} a_i b_j$$

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Coefficient of $x^1 = x$ is $a_0b_1 + a_1b_0$

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots, + b_{n-1} x^{n-1}$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Coefficient of $x^1 = x$ is $a_0b_1 + a_1b_0$

Coefficient of x^2 is $a_0b_2 + a_1b_1 + a_2b_0$

Suppose that we have two polynomials of degree *n*

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

The product is a polynomial C(x) of degree 2n - 2 where the coefficient of the term x^k is

$$c_k = \sum_{(i,j):i+j=k} a_i b_j$$

Equivalently: the coefficient vector c of C(x) is the convolution a * b of the coefficient vectors of A(x) and B(x).

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

What is the running time in this case?

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

We will attempt to design a faster algorithm using Divide & Conquer.

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

We will attempt to design a faster algorithm using Divide & Conquer.

Fast Fourier Transform (FFT)

Key idea: How to represent polynomials

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$a = (a_0, a_1, \dots, a_{n-1})$$
, $b = (b_0, b_1, \dots, b_{n-1})$

Consider the polynomial $A(x) = a_0 + a_1 x$

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Polynomial interpolation

Polynomial interpolation

Consider the polynomial $A(x) = a_0 + a_1 x + a_2 x^2 + \dots, a_d x^d$

Polynomial interpolation

Consider the polynomial $A(x) = a_0 + a_1 x + a_2 x^2 + \dots, a_d x^d$

Fact: Any polynomial of degree d can be represented by its values on at least d + 1 points.

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$a = (a_0, a_1, \dots, a_{n-1})$$
, $b = (b_0, b_1, \dots, b_{n-1})$

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$a = (a_0, a_1, \dots, a_{n-1})$$
, $b = (b_0, b_1, \dots, b_{n-1})$

Representation 2: via their values on at least n points

New strategy

New strategy

Step 1: Choose 2n values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each j = 1, 2, ..., 2n.

New strategy

Step 1: Choose 2n values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each j = 1, 2, ..., 2n.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

New strategy

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

$\Omega(n)$ for each j

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

? no idea for now

A different representation

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

A different representation

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

A different representation

Consider the polynomial $A(x) = a_0 + a_1 x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

? no idea for now

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

? no idea for now

We will choose the 2n values carefully!

Argument ϕ : the angle of the radius with the positive real axis

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r: r = |z| = \sqrt{a^2 + b^2}$

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r: r = |z| = \sqrt{a^2 + b^2}$

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r: r = |z| = \sqrt{a^2 + b^2}$

Let *n* be a positive integer. An *n*th root of unity is a (complex) number *x* satisfying the equation $x^n = 1$.

Let *n* be a positive integer. An *n*th root of unity is a (complex) number *x* satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$$
, for $k = 0, 1, ..., n - 1$

Let *n* be a positive integer. An *n*th root of unity is a (complex) number *x* satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$$
, for $k = 0, 1, ..., n - 1$

Equivalently: $e^{\frac{2k\pi i}{n}}$, for k = 0, 1, ..., n - 1

Let *n* be a positive integer. An *n*th root of unity is a (complex) number *x* satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$$
, for $k = 0, 1, ..., n - 1$

Equivalently: $e^{\frac{2k\pi i}{n}}$, for k = 0, 1, ..., n - 1

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i\sin(2\pi/n)$ is called the *principal nth root of unity.*

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i\sin(2\pi/n)$ is called the *principal nth root of unity.*

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i\sin(2\pi/n)$ is called the *principal nth root of unity.*

Let $\omega_n = \cos(2\pi/n) + i\sin(2\pi/n) = e^{\frac{2\pi i}{n}}$

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i\sin(2\pi/n)$ is called the *principal nth root of unity.*

Let
$$\omega_n = \cos(2\pi/n) + i\sin(2\pi/n) = e^{\frac{2\pi i}{n}}$$

The *n*th roots of unity can then be written as:

$$1, \omega_n, \omega_n^2, \omega_n^3, \dots, \omega_n^{n-1}$$

since
$$e^{\frac{2\pi ki}{n}} = \left(e^{\frac{2\pi i}{n}}\right)^k = \omega_n^k$$

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i\sin(2\pi/n)$ is called the *principal nth root of unity.*

Let
$$\omega_n = \cos(2\pi/n) + i\sin(2\pi/n) = e^{\frac{2\pi i}{n}}$$

The *n*th roots of unity can then be written as:

$$1, \omega_n, \omega_n^2, \omega_n^3, \dots, \omega_n^{n-1} \qquad \qquad \omega_8^3 = -\frac{1-i}{\sqrt{2}} \qquad \qquad \omega_8 = \frac{1+i}{\sqrt{2}} \\ \text{since } e^{\frac{2\pi ki}{n}} = \left(e^{\frac{2\pi i}{n}}\right)^k = \omega_n^k \qquad \qquad \omega_8^5 = -\frac{1+i}{\sqrt{2}} \qquad \qquad \omega_8^{-1} = \frac{1-i}{\sqrt{2}} \\ \omega_8^{-1} = -\frac{1+i}{\sqrt{2}} \qquad \qquad \omega_8^{-1} = \frac{1-i}{\sqrt{2}} \\ \omega_8^{-1} = -\frac{1+i}{\sqrt{2}} \qquad \qquad \omega_8^{-1} = \frac{1-i}{\sqrt{2}} \\ \omega_8^{-1} = -\frac{1-i}{\sqrt{2}} \\ \omega_8^{-1$$

 $\omega^2 = i$

Cancellation: Let $n \ge 0, k \ge 0, d > 0$. It holds that $\omega_{dn}^{dk} = \omega_n^k$

Cancellation: Let $n \ge 0, k \ge 0, d > 0$. It holds that $\omega_{dn}^{dk} = \omega_n^k$

Proof:
$$\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i dk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k$$

Cancellation: Let $n \ge 0, k \ge 0, d > 0$. It holds that $\omega_{dn}^{dk} = \omega_n^k$

Proof:
$$\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i dk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k$$

Halving: Let n > 0 be even. Then if we square all the *n n*th roots of unity, we get all n/2 (n/2)th roots of unity, each one twice.

Cancellation: Let $n \ge 0, k \ge 0, d > 0$. It holds that $\omega_{dn}^{dk} = \omega_n^k$

Proof:
$$\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i dk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k$$

Halving: Let n > 0 be even. Then if we square all the *n n*th roots of unity, we get all n/2 (n/2)th roots of unity, each one twice.

Proof:
$$(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k$$
, also
 $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

Cancellation: Let
$$n \ge 0, k \ge 0, d \ge 0$$
. It holds that $\omega_{1}^{dk} = \omega_{n}^{k}$
Proof: $\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk}$

$$\begin{array}{c} 1 & \omega_{n}^{2} & \dots & \omega_{n}^{n-2} & \omega_{n}^{n} & \omega_{n}^{n+2} & \dots & \omega_{n}^{2(n-1)} \\ 1 & \| & \| & \dots & \| & \| & \| & \| & \dots & \| \\ 1 & \omega_{n/2} & \dots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \dots & \omega_{n/2}^{n/2-1} \end{array}$$

Halving: Let n > 0 be even. Then if we square all the *n n*th roots of unity, we get all n/2 (n/2)th roots of unity, each one twice.

Proof:
$$(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k$$
, also
 $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

Summation: Suppose $n \ge 1$ and k is not divisible by n. It holds that $\sum_{j=0}^{n-1} (\omega_n^k)^j = 0$

Summation: Suppose $n \ge 1$ and k is not divisible by n. It holds that $\sum_{j=0}^{n-1} (\omega_n^k)^j = 0$

Proof:
$$\sum_{j=0}^{n-1} \left(\omega_n^k\right)^j = \frac{\left(\omega_n^k\right)^n - 1}{\omega_n^k - 1} = \frac{\left(\omega_n^n\right)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0$$

Summation: Suppose $n \ge 1$ and k is not divisible by n. It holds that $\sum_{j=0}^{n-1} (\omega_n^k)^j = 0$

Proof:
$$\sum_{j=0}^{n-1} \left(\omega_n^k\right)^j = \frac{\left(\omega_n^k\right)^n - 1}{\omega_n^k - 1} = \frac{\left(\omega_n^n\right)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0$$

sum of geometric series

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

? no idea for now

We will choose the 2n values carefully!

 $\Omega(n)$ for each j

 $\Omega(n^2)$ overall

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *O(n) (these are now just numbers).*

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

? no idea for now

We will choose the 2nth (complex) roots of unity.

Discrete Fourier Transform

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a sequence of m complex numbers $p_0, p_1, \ldots, p_{m-1}$ is defined to be the sequence of complex numbers

$$P(1), P(\omega_m), P(\omega_m^2), \dots, P(\omega_m^{m-1})$$

obtained by evaluating the polynomial

$$P(x) = p_0 + p_1 x + p_2 x^2 + \dots, p_{m-1} x^{m-1}$$

on each of the *m*th roots of unity.

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{even}}(x) = p_0 + p_2 x + p_4 x^2 + \dots + p_{m-2} x^{m/2-1}$ $P_{\text{odd}}(x) = p_1 + p_3 x + p_5 x^2 + \dots + p_{m-1} x^{m/2-1}$

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{even}}(x) = p_0 + p_2 x + p_4 x^2 + \dots + p_{m-2} x^{m/2-1}$ $P_{\text{odd}}(x) = p_1 + p_3 x + p_5 x^2 + \dots + p_{m-1} x^{m/2-1}$

Observe that: $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let

$$P_{\text{even}}(x) = p_0 + p_2 x + p_4 x^2 + \dots + p_{m-2} x^{m/2-1}$$

$$P_{\text{odd}}(x) = p_1 + p_3 x + p_5 x^2 + \dots + p_{m-1} x^{m/2-1}$$

Observe that: $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, ..., \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, ..., (\omega_m^{m-1})^2$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, ..., \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, ..., (\omega_m^{m-1})^2$ We successfully halved the degree

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ We successfully halved the degree 1². Combine the results to obtain P(x)

Properties of the Roots of Unity

Cancellation: Let
$$n \ge 0, k \ge 0, d \ge 0$$
. It holds that $\omega_{1}^{dk} = \omega_{n}^{k}$
Proof: $\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk}$

$$\begin{array}{c} 1 & \omega_{n}^{2} & \dots & \omega_{n}^{n-2} & \omega_{n}^{n} & \omega_{n}^{n+2} & \dots & \omega_{n}^{2(n-1)} \\ 1 & \| & \| & \dots & \| & \| & \| & \| & \dots & \| \\ 1 & \omega_{n/2} & \dots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \dots & \omega_{n/2}^{n/2-1} \end{array}$$

Halving: Let n > 0 be even. Then if we square all the *n n*th roots of unity, we get all n/2 (n/2)th roots of unity, each one twice.

Proof:
$$(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k$$
, also
 $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ We successfully halved the degree 12. Combine the results to obtain P(x)

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ We successfully halved the degree 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ By the successfully halved the degree 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ By the successfully halved the degree 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ By the successfully halved the degree 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$ By the successfully halved the degree 1. Evaluating on m points 2. Combine the results to obtain P(x)

This is a list of the m/2 (m/2)th roots of unity, each appearing twice

So to evaluate P(x) at $1, \omega_m, \omega_m^2, ..., \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, ..., (\omega_m^{m-1})^2$ We successfully halved the degree 12. Combine the results to obtain P(x)

This is a list of the m/2 (m/2)th roots of unity, each appearing twice

So we only need to evaluate at m/2 points

So to evaluate P(x) at $1, \omega_m, \omega_m^2, ..., \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, ..., (\omega_m^{m-1})^2$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can

1. Evaluate the two polynomials of degree m/2 - 1 at 1^2 , $(\omega_m)^2$, $(\omega_m^2)^2$, ..., $(\omega_m^{m-1})^2$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can

1. Evaluate the two polynomials of degree m/2 - 1 at 1^2 , $(\omega_m)^2$, $(\omega_m^2)^2$, ..., $(\omega_m^{m-1})^2$

2. Combine the results to obtain P(x)

 $P(1) = P_{even}(1) + 1 \cdot P_{odd}(1)$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$

$$P(1) = P even(1) + 1 \cdot P odd(1)$$

$$P(\omega_m) = P even(\omega_{m/2}) + \omega_m \cdot P odd(\omega_{m/2})$$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$

$$P(1) = P_{even}(1) + 1 \cdot P_{odd}(1)$$

$$P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2})$$

$$P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2)$$

So to evaluate P(x) at $1, \omega_m, \omega_m^2, \dots, \omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree m/2 - 1 at $1^2, (\omega_m)^2, (\omega_m^2)^2, \dots, (\omega_m^{m-1})^2$

$$P(1) = P_{even}(1) + 1 \cdot P_{odd}(1)$$

$$P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2})$$

$$P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2)$$

$$P(1) = P_{even}(1) + 1 \cdot P_{odd}(1)$$

$$P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2})$$

$$P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2)$$

$$\vdots$$

$$P(\omega_m^{m/2-1}) = P_{even}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^{m/2-1})$$

$$P(1) = P_{even}(1) + 1 \cdot P_{odd}(1) \qquad P(\omega_m^{m/2}) = P(1)$$

$$P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2})$$

$$P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2)$$

$$\vdots$$

$$P(\omega_m^{m/2-1}) = P_{even}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^{m/2-1})$$

 $P(1) = P_{even}(1) + 1 \cdot P_{odd}(1) \qquad P(\omega_m^{m/2}) = P(1)$ $P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2}) \qquad P(\omega_m^{m/2+1}) = P(\omega_m)$ $P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2)$ \vdots

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$

$$P(1) = P_{even}(1) + 1 \cdot P_{odd}(1) \qquad P(\omega_m^{m/2}) = P(1)$$

$$P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2}) \qquad P(\omega_m^{m/2+1}) = P(\omega_m)$$

$$P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2) \qquad \vdots$$

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$

 $P(1) = P_{even}(1) + 1 \cdot P_{odd}(1) \qquad P(\omega_m^{m/2}) = P(1)$ $P(\omega_m) = P_{even}(\omega_{m/2}) + \omega_m \cdot P_{odd}(\omega_{m/2}) \qquad P(\omega_m^{m/2+1}) = P(\omega_m)$ $P(\omega_m^2) = P_{even}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{odd}(\omega_{m/2}^2) \qquad \vdots$

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1}) \qquad P(\omega_m^{m-1}) = P(\omega_m^{m/2-1})$

Pseudocode (CLRS pp. 890)

FFT(a, n)1 **if** *n* == 1 // DFT of 1 element is the element itself return a 2 3 $\omega_n = e^{2\pi i/n}$ 4 $\omega = 1$ 5 $a^{\text{even}} = (a_0, a_2, \dots, a_{n-2})$ 6 $a^{\text{odd}} = (a_1, a_3, \dots, a_{n-1})$ 7 $y^{\text{even}} = \text{FFT}(a^{\text{even}}, n/2)$ 8 $y^{\text{odd}} = \text{FFT}(a^{\text{odd}}, n/2)$ 9 for k = 0 to n/2 - 1 // at this point, $\omega = \omega_n^k$ 10 $y_k = y_k^{\text{even}} + \omega y_k^{\text{odd}}$ $y_{k+(n/2)} = y_k^{\text{even}} - \omega y_k^{\text{odd}}$ 11 $\omega = \omega \omega_n$ 12 13 return y

Step 1: Choose 2n values x_1, x_2, \dots, x_{2n} and evaluate $A(x_j)$ and $B(x_j)$ for each $j = 1, 2, \dots, 2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

How much time do we need for each of the evaluations?

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

How much time do we need for each of the evaluations?

Let T(n) be the time required to evaluate a polynomial of degree n - 1 on all of the 2n 2nth roots of unity.

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

How much time do we need for each of the evaluations?

Let T(n) be the time required to evaluate a polynomial of degree n - 1 on all of the 2n 2nth roots of unity.

We need to evaluate $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

How much time do we need for each of the evaluations?

Let T(n) be the time required to evaluate a polynomial of degree n - 1 on all of the 2n 2nth roots of unity.

We need to evaluate $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$

Running time: $T(n) \le 2T(n/2) + cn$

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

How much time do we need for each of the evaluations?

Let T(n) be the time required to evaluate a polynomial of degree n - 1 on all of the 2n 2nth roots of unity.

We need to evaluate $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$

Running time: $T(n) \leq 2T(n/2) + cn$

Asymptotic running time: $O(n \log n)$

What if we divided like this?

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{small}}(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m/2-1} x^{m/2-1}$ $P_{\text{big}}(x) = p_{m/2} + p_{m/2+1} x + p_{m/2+2} x^2 + \dots + p_{m-1} x^{m/2-1}$

We would have: $P(x) = P_{even}(x) + x^{m/2} \cdot P_{odd}(x)$

What is the issue with this?

 $O(n \log n)$

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

What about this?

Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$

Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$

Main idea: We will reduce *polynomial interpolation* to *polynomial evaluation*, which we saw how to do using D&C earlier.

Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$

Main idea: We will reduce *polynomial interpolation* to *polynomial evaluation*, which we saw how to do using D&C earlier.

Define the polynomial
$$D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$$
, and evaluate

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^k) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot (\omega_{2n}^k)^s$$

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{s=0}^{2n-1} C(\omega_{2n}^{s}) \cdot (\omega_{2n}^{k})^{s}$$
$$= \sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_{t} (\omega_{2n}^{s})^{t}\right) (\omega_{2n}^{k})^{s}$$

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{s=0}^{2n-1} C(\omega_{2n}^{s}) \cdot (\omega_{2n}^{k})^{s}$$
$$= \sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_{t} (\omega_{2n}^{s})^{t} \right) (\omega_{2n}^{k})^{s}$$
$$= \sum_{t=0}^{2n-1} c_{t} \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{s})^{t} (\omega_{2n}^{k})^{s} \right)$$

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{s=0}^{2n-1} C(\omega_{2n}^{s}) \cdot (\omega_{2n}^{k})^{s}$$

= $\sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_{t} (\omega_{2n}^{s})^{t} \right) (\omega_{2n}^{k})^{s}$
= $\sum_{t=0}^{2n-1} c_{t} \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{s})^{t} (\omega_{2n}^{k})^{s} \right) = \sum_{t=0}^{2n-1} c_{t} \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)$

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$
$$= \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s\right)$$

Properties of the Roots of Unity

Summation: Suppose $n \ge 1$ and k is not divisible by n. It holds that $\sum_{j=0}^{n-1} (\omega_n^k)^j = 0$

Proof:
$$\sum_{j=0}^{n-1} \left(\omega_n^k\right)^j = \frac{\left(\omega_n^k\right)^n - 1}{\omega_n^k - 1} = \frac{\left(\omega_n^n\right)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0$$

sum of geometric series

Define the polynomial $D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$, and evaluate

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$
$$= \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s\right)$$

2n-1

s=0

Define the polynomial $D(x) = \sum C(\omega_{2n}^s) \cdot x^s$, and evaluate

it at the 2nth roots of unity.

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$
$$= \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s\right)$$

For all *t* such that t + k is not divisible by 2n, we have: $\sum_{k=0}^{2n-1} (\omega_{k}^{t+k})^{s} = 0$

$$\sum_{n=0}^{\infty} (\omega_{2n}^{i+n}) = 0$$

2*n*-1

s=0

Define the polynomial $D(x) = \sum C(\omega_{2n}^s) \cdot x^s$, and evaluate

it at the 2nth roots of unity.

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$
$$= \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s\right)$$

For all *t* such that t + k is not divisible by 2n, we have: $\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s = 0$

When t + k is divisible by 2n, (i.e., when t = 2n - k) we have

$$\omega_{2n}^{t+k} = 1$$

2*n*-1

s=0

Define the polynomial $D(x) = \sum C(\omega_{2n}^s) \cdot x^s$, and evaluate

it at the 2nth roots of unity.

$$D(\omega_{2n}^{k}) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks}\right)$$
$$= \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s\right)$$

 $= c_{2n-k} \cdot 2n$

For all *t* such that t + k is not divisible by 2n, we have: $\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s = 0$

When t + k is divisible by 2n, (i.e., when t = 2n - k) we have

$$\omega_{2n}^{t+k} = 1$$

Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$

Define the polynomial
$$D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s$$
, and evaluate

We get:
$$c_s = \frac{1}{2n} \cdot D\left(\omega_{2n}^{2n-s}\right)$$

The Discrete Fourier Transform (DFT) of a sequence of m complex numbers $p_0, p_1, \ldots, p_{m-1}$ is defined to be the sequence of complex numbers

$$P(1), P(\omega_m), P(\omega_m^2), \dots, P(\omega_m^{m-1})$$

obtained by evaluating the polynomial

$$P(x) = p_0 + p_1 x + p_2 x^2 + \dots, p_{m-1} x^{m-1}$$

on each of the *m*th roots of unity.

We can compute $\overrightarrow{p} = M^{-1}\overrightarrow{\hat{p}}$

We can compute $\overrightarrow{p} = M^{-1}\overrightarrow{\hat{p}}$

Is M invertible?

We can compute $\overrightarrow{p} = M^{-1}\overrightarrow{\hat{p}}$

Is M invertible?

How can we compute M^{-1} ?

M is invertible

Vandermonde matrix

M is invertible

Vandermonde matrix

$$\det(M) = \prod_{0 \le i < j \le \ell} (x_j - x_i)$$

M is invertible

Vandermonde matrix

$$\det(M) = \prod_{0 \le i < j \le \ell} (x_j - x_i)$$

When $m = \ell$ (i.e., M is square) and $z_i \neq z_j$ for all $i \neq j$ (i.e., all z_i 's are distinct and thus $det(M) \neq 0$, then M is invertible.

Lemma:
$$M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})$$

Lemma:
$$M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})$$

Lemma:
$$M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})$$

Proof:
$$M(\omega_m)(j, j') = \omega_m^{jj'}$$
, and $\frac{1}{n}M(\omega_m^{-1})(j, j') = \frac{1}{n}\omega_m^{-jj'}$
Consider the matrix $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)$

Lemma:
$$M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})$$

Proof:
$$M(\omega_m)(j, j') = \omega_m^{jj'}$$
, and $\frac{1}{n}M(\omega_m^{-1})(j, j') = \frac{1}{n}\omega_m^{-jj'}$
Consider the matrix $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)$

$$\frac{1}{n}M(\omega_m^{-1})\cdot M(\omega_m)(j,j') = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{-kj}\cdot\omega_m^{kj'} = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{k(j'-j)}$$

$$\frac{1}{n}M(\omega_m^{-1})\cdot M(\omega_m)(j,j') = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{-kj}\cdot\omega_m^{kj'} = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{k(j'-j)}$$

$$\frac{1}{n}M(\omega_m^{-1})\cdot M(\omega_m)(j,j') = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{-kj}\cdot\omega_m^{kj'} = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{k(j'-j)}$$

If
$$j = j'$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = 1$

$$\frac{1}{n}M(\omega_m^{-1})\cdot M(\omega_m)(j,j') = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{-kj}\cdot\omega_m^{kj'} = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{k(j'-j)}$$

If
$$j = j'$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = 1$

If
$$j \neq j'$$
, then $\frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)} = 0$ by summation.

Then we have:

$$\frac{1}{n}M(\omega_m^{-1})\cdot M(\omega_m)(j,j') = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{-kj}\cdot\omega_m^{kj'} = \frac{1}{n}\sum_{k=0}^{n-1}\omega_m^{k(j'-j)}$$

If
$$j = j'$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = 1$

If
$$j \neq j'$$
, then $\frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)} = 0$ by summation.

Why? Because $-(m-1) \leq j' - j \leq m-1$

Lemma:
$$M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})$$

Hence
$$\frac{1}{n}M(\omega_m^{-1}) \cdot M_m(\omega_m) = I_m$$
 (the identify matrix).

Running time

 $O(n \log n)$

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

What about this?

Running time

 $O(n \log n)$

Step 1: Choose the 2n 2nth roots of unity $1, \omega_{2n}, \omega_{2n}^2, \dots, \omega_{2n}^{2n-1}$ and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, \dots, 2n - 1$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j (these are now just numbers).

Step 3: Recover *C* from $C(x_1), C(x_2), ..., C(x_{2n})$.

Convolution Theorem

For any two vectors a and b of length n where n is a power of 2, the convolution a * b of a and b can be computed as:

$$a * b = \mathsf{DFT}_{2n}^{-1} \left(\mathsf{DFT}_{2n}(a) + \mathsf{DFT}_{2n}(b) \right)$$