Algorithms and Data Structures Fast Fourier Transform

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

The product is a polynomial $C(x)$ of degree $2n - 2$ where the coefficient of the term x^k is

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

The product is a polynomial $C(x)$ of degree $2n - 2$ where the coefficient of the term x^k is

$$
c_k = \sum_{(i,j):i+j=k} a_i b_j
$$

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Coefficient of $x^1 = x$ is $a_0b_1 + a_1b_0$

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

Coefficient of $x^0 = 1$ is $a_0 b_0$

Coefficient of $x^1 = x$ is $a_0b_1 + a_1b_0$

Coefficient of x^2 is $a_0b_2 + a_1b_1 + a_2b_0$

Suppose that we have two polynomials of degree *n*

$$
A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}
$$

$$
B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}
$$

The product is a polynomial $C(x)$ of degree $2n-2$ where the coefficient of the term x^k is

$$
c_k = \sum_{(i,j):i+j=k} a_i b_j
$$

Equivalently: the coefficient vector c of $C(x)$ is the *convolution* $a * b$ of the coefficient vectors of $A(x)$ and $B(x).$

Naive approach: Compute all the partial products (for every pair (i, j)) and add them up.

Naive approach: Compute all the partial products (for every pair (*i*, *j*)) and add them up.

What is the running time in this case?

Naive approach: Compute all the partial products (for every pair (*i*, *j*)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

Naive approach: Compute all the partial products (for every pair (*i*, *j*)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

We will attempt to design a faster algorithm using Divide & Conquer.

Naive approach: Compute all the partial products (for every pair (*i*, *j*)) and add them up.

What is the running time in this case?

 $\Theta(n^2)$

We will attempt to design a faster algorithm using Divide & Conquer.

Fast Fourier Transform (FFT)

Key idea: How to represent polynomials

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$
a = (a_0, a_1, \dots, a_{n-1}), b = (b_0, b_1, \dots, b_{n-1})
$$

Consider the polynomial $A(x) = a_0 + a_1x$

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Polynomial interpolation

Polynomial interpolation

Consider the polynomial $A(x) = a_0 + a_1x + a_2x^2 + \dots, a_dx^d$

Polynomial interpolation

Consider the polynomial $A(x) = a_0 + a_1x + a_2x^2 + \ldots, a_dx^d$

Fact: Any polynomial of degree *d* can be represented by its values on at least $d+1$ points.

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$
a = (a_0, a_1, \dots, a_{n-1}), b = (b_0, b_1, \dots, b_{n-1})
$$

Key idea: How to represent polynomials

Representation 1: via their coefficient vectors

$$
a = (a_0, a_1, \dots, a_{n-1}), b = (b_0, b_1, \dots, b_{n-1})
$$

Representation 2: via their values on at least *n* points

New strategy

New strategy

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

New strategy

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).*
New strategy

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).*

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).*

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

$\Omega(n)$ for each *j*

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

 $\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

 $\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

? no idea for now

A different representation

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

A different representation

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

A different representation

Consider the polynomial $A(x) = a_0 + a_1x$

What is this, geometrically?

What is the a way to represent a line uniquely?

Via two values x_1 and x_2 .

 $\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

? no idea for now

 $\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

? no idea for now

We will choose the 2*n* **values carefully!**

Quick Detour: Complex Numbers $\mathbb C$

Quick Detour: Complex Numbers $\mathbb C$

Argument ϕ : the angle of the radius with the positive real axis

Quick Detour: Complex Numbers C

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r : r = |z| = \sqrt{a^2 + b^2}$

Quick Detour: Complex Numbers $\mathbb C$

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r : r = |z| = \sqrt{a^2 + b^2}$

Quick Detour: Complex Numbers $\mathbb C$

Argument ϕ : the angle of the radius with the positive real axis Magnitude $r : r = |z| = \sqrt{a^2 + b^2}$

Let n be a positive integer. An n th root of unity is a (complex) number x satisfying the equation $x^n = 1$.

Let n be a positive integer. An n th root of unity is a (complex) number x satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$
\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \text{ for } k = 0, 1, \dots, n-1
$$

Let n be a positive integer. An n th root of unity is a (complex) number x satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$
\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \text{ for } k = 0, 1, \dots, n-1
$$

Equivalently: *e* 2*kπi* $\frac{m}{n}$, for $k = 0, 1, ..., n - 1$

Let n be a positive integer. An n th root of unity is a (complex) number x satisfying the equation $x^n = 1$.

The *n*th roots of unity are:

$$
\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \text{ for } k = 0, 1, \dots, n-1
$$

Equivalently: *e* 2*kπi* $\frac{m}{n}$, for $k = 0, 1, ..., n - 1$

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i \sin(2\pi/n)$ is called the principal nth root of unity. 2*πi* $\frac{m}{n}$ = cos($2\pi/n$) + *i* sin($2\pi/n$)

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i \sin(2\pi/n)$ is called the principal nth root of unity. 2*πi* $\frac{m}{n} = \cos(2\pi/n) + i \sin(2\pi/n)$

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i \sin(2\pi/n)$ is called the principal nth root of unity. 2*πi* $\frac{m}{n} = \cos(2\pi/n) + i \sin(2\pi/n)$

Let $\omega_n = \cos(2\pi/n) + i \sin(2\pi/n) = e$ 2*πi n*

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i \sin(2\pi/n)$ is called the principal nth root of unity. 2*πi* $\frac{m}{n} = \cos(2\pi/n) + i \sin(2\pi/n)$

Let
$$
\omega_n = \cos(2\pi/n) + i \sin(2\pi/n) = e^{\frac{2\pi i}{n}}
$$

The *n*th roots of unity can then be written as:

$$
1,\omega_n,\omega_n^2,\omega_n^3,\ldots,\omega_n^{n-1}
$$

since
$$
e^{\frac{2\pi ki}{n}} = \left(e^{\frac{2\pi i}{n}}\right)^k = \omega_n^k
$$

The quantity $e^{\frac{2\pi i}{n}} = \cos(2\pi/n) + i \sin(2\pi/n)$ is called the principal nth root of unity. 2*πi* $\frac{m}{n} = \cos(2\pi/n) + i \sin(2\pi/n)$

Let
$$
\omega_n = \cos(2\pi/n) + i \sin(2\pi/n) = e^{\frac{2\pi i}{n}}
$$

The *n*th roots of unity can then be written as:

$$
1, \omega_n, \omega_n^2, \omega_n^3, ..., \omega_n^{n-1}
$$
\n
$$
\omega_8^3 = -\frac{1-i}{\sqrt{2}} \sqrt{\omega_8} = i \sqrt{2}
$$
\n
$$
\omega_8^4 = -1 \sqrt{2}
$$
\n
$$
\omega_8^4 = -1 \sqrt{2}
$$
\n
$$
\omega_8^5 = -\frac{1+i}{\sqrt{2}} \sqrt{\omega_8^5} = -\frac{1-i}{\sqrt{2}}
$$
\n
$$
\omega_8^6 = -i \sqrt{2}
$$
\n
$$
\omega_8^7 = \frac{1-i}{\sqrt{2}}
$$

Cancellation: Let $n \geq 0, k \geq 0, d > 0.$ It holds that ω_{dn}^{dk} *dn* $= \omega_n^k$

Cancellation: Let $n \geq 0, k \geq 0, d > 0.$ It holds that ω_{dn}^{dk} *dn* $= \omega_n^k$

Proof:
$$
\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi idk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k
$$

Cancellation: Let $n \geq 0, k \geq 0, d > 0.$ It holds that ω_{dn}^{dk} *dn* $= \omega_n^k$

Proof:
$$
\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i dk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k
$$

Halving: Let $n > 0$ be even. Then if we square all the n nth roots of unity, we get all $n/2$ $(n/2)$ th roots of unity, each one twice.

Cancellation: Let $n \geq 0, k \geq 0, d > 0.$ It holds that ω_{dn}^{dk} *dn* $= \omega_n^k$

Proof:
$$
\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i dk}{dn}} = e^{\frac{2\pi i k}{n}} = \omega_n^k
$$

Halving: Let $n > 0$ be even. Then if we square all the n nth roots of unity, we get all $n/2$ $(n/2)$ th roots of unity, each one twice.

Proof:
$$
(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k
$$
, also
\n $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

Cancellation: Let
$$
n \geq 0, k \geq 0, d > 0
$$
. It holds that $\omega_n^{dk} = \omega_n^k$

\nProof: $\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}} \right)^{dk} \begin{bmatrix} 1 & \omega_n^2 & \cdots & \omega_n^{n-2} & \omega_n^n & \omega_n^{n+2} & \cdots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \$

Halving: Let $n > 0$ be even. Then if we square all the n nth roots of unity, we get all $n/2$ $(n/2)$ th roots of unity, each one twice.

Proof:
$$
(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k
$$
, also
\n $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

Summation: Suppose $n \geq 1$ and k is not divisible by n . It holds that *n*−1 ∑ $j=0$ $(\omega_n^k)^$ *j* $= 0$

Summation: Suppose $n \geq 1$ and k is not divisible by n . It holds that *n*−1 ∑ $j=0$ $(\omega_n^k)^$ *j* $= 0$

Proof:
$$
\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^n - 1}{\omega_n^k - 1} = \frac{(\omega_n^n)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0
$$

Summation: Suppose $n \geq 1$ and k is not divisible by n . It holds that *n*−1 ∑ *j*=0 $(\omega_n^k)^$ *j* $= 0$

Proof:
$$
\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^n - 1}{\omega_n^k - 1} = \frac{(\omega_n^n)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0
$$

sum of geometric series

 $\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

? no idea for now

We will choose the 2*n* **values carefully!**
$\Omega(n)$ for each *j*

 $\Omega(n^2)$ overall

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).* $|O(n)|$

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

? no idea for now

We will choose the 2*n***th (complex) roots of unity.**

Discrete Fourier Transform

Discrete Fourier Transform

The *Discrete Fourier Transform (DFT)* of a sequence of *m* complex numbers $p_0, p_1, ..., p_{m-1}$ is defined to be the sequence of complex numbers

$$
P(1), P(\omega_m), P(\omega_m^2), \ldots, P(\omega_m^{m-1})
$$

obtained by evaluating the polynomial

$$
P(x) = p_0 + p_1 x + p_2 x^2 + \dots, p_{m-1} x^{m-1}
$$

on each of the *m*th roots of unity.

-
-
- -
	-

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{even}}(x) = p_0 + p_2x + p_4x^2 + \ldots + p_{m-2}x^{m/2-1}$ $P_{\text{odd}}(x) = p_1 + p_3x + p_5x^2 + \ldots + p_{m-1}x^{m/2-1}$

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{even}}(x) = p_0 + p_2x + p_4x^2 + \ldots + p_{m-2}x^{m/2-1}$ $P_{\text{odd}}(x) = p_1 + p_3x + p_5x^2 + \ldots + p_{m-1}x^{m/2-1}$

Observe that: $P(x) = P_{\text{even}}(x^2) + x \cdot P_{\text{odd}}(x^2)$

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let

$$
P_{\text{even}}(x) = p_0 + p_2 x + p_4 x^2 + \dots + p_{m-2} x^{m/2-1}
$$

$$
P_{\text{odd}}(x) = p_1 + p_3 x + p_5 x^2 + \dots + p_{m-1} x^{m/2-1}
$$

Observe that: $P(x) = P_{\text{even}}(x^2) + x \cdot P_{\text{odd}}(x^2)$

 ${\mathbf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1},$ we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at 1^2 , $(\omega_m)^2$, $(\omega_m^2)^2$, ..., $(\omega_m^{m-1})^2$

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$ We successfully halved the degree

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at 2. Combine the results to obtain *P*(*x*) $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$ It seems we are still evaluating on *m* − 1 points We successfully halved the degree

Properties of the Roots of Unity

Cancellation: Let
$$
n \geq 0, k \geq 0, d > 0
$$
. It holds that $\omega_n^{dk} = \omega_n^k$

\nProof: $\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}} \right)^{dk} \begin{bmatrix} 1 & \omega_n^2 & \cdots & \omega_n^{n-2} & \omega_n^n & \omega_n^{n+2} & \cdots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} \\ 1 & \omega_{n/2} & \cdots & \omega_{n/2}^{n/2-1} & 1 & \omega_{n/2} & \$

Halving: Let $n > 0$ be even. Then if we square all the n nth roots of unity, we get all $n/2$ $(n/2)$ th roots of unity, each one twice.

Proof:
$$
(\omega_n^k)^2 = \omega_n^{2k} = \omega_{n/2}^k
$$
, also
\n $(\omega_n^{k+n/2})^2 = \omega_n^{2k+n} = \omega_n^{2k} \cdot \omega_n^n = \omega_{n/2}^k$

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at 2. Combine the results to obtain *P*(*x*) $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$ It seems we are still evaluating on *m* points We successfully halved the degree

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at 2. Combine the results to obtain $P(x)$ $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$ It seems we are still evaluating on *m* points We successfully halved the degree

This is a list of the *m*/2 (*m*/2)th roots of unity, each appearing twice

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at 2. Combine the results to obtain $P(x)$ $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$ It seems we are still evaluating on *m* points We successfully halved the degree

This is a list of the *m*/2 (*m*/2)th roots of unity, each appearing twice

So we only need to evaluate at *m*/2 points

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can 1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can

1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can

1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$

2. Combine the results to obtain *P*(*x*)

 $P(1) = P$ **even** $(1) + 1 \cdot P$ **odd** (1)

 ${\mathsf S}$ o to evaluate $P(x)$ at $1,\omega_m,\omega_m^2,...,\omega_m^{m-1}$, we can

1. Evaluate the two polynomials of degree $m/2 - 1$ at $1^2, (\omega_m)^2, (\omega_m^2)^2, \ldots, (\omega_m^{m-1})^2$

$$
P(1) = Peven(1) + 1 \cdot Podd(1)
$$

$$
P(\omega_m) = Peven(\omega_{m/2}) + \omega_m \cdot Podd(\omega_{m/2})
$$

$$
P(1) = Peven(1) + 1 \cdot Podd(1)
$$

$$
P(\omega_m) = Peven(\omega_{m/2}) + \omega_m \cdot Podd(\omega_{m/2})
$$

$$
P(\omega_m^2) = Peven(\omega_{m/2}^2) + \omega_m^2 \cdot Podd(\omega_{m/2}^2)
$$

2. Combine the results to obtain *P*(*x*)

$$
P(1) = Peven(1) + 1 \cdot Podd(1)
$$

$$
P(\omega_m) = Peven(\omega_{m/2}) + \omega_m \cdot Podd(\omega_{m/2})
$$

$$
P(\omega_m^2) = Peven(\omega_{m/2}^2) + \omega_m^2 \cdot Podd(\omega_{m/2}^2)
$$

 $\ddot{\cdot}$

$$
P(1) = P_{\text{even}}(1) + 1 \cdot P_{\text{odd}}(1)
$$

\n
$$
P(\omega_m) = P_{\text{even}}(\omega_{m/2}) + \omega_m \cdot P_{\text{odd}}(\omega_{m/2})
$$

\n
$$
P(\omega_m^2) = P_{\text{even}}(\omega_{m/2}^2) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^2)
$$

\n:
\n:
\n
$$
P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})
$$

 $P(1) = P$ **even** $(1) + 1 \cdot P$ **odd** (1) $P(\omega_m) = P$ **even** $(\omega_{m/2}) + \omega_m \cdot P$ **odd** $(\omega_{m/2})$ $P(\omega_m^2) = P$ **even** $(\omega_{m/2}^2) + \omega_m^2 \cdot P$ **odd** $(\omega_{m/2}^2)$ $\ddot{\cdot}$ $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$ $P(\omega_m^{m/2}) = P(1)$

 $P(1) = P$ **even** $(1) + 1 \cdot P$ **odd** (1) $P(\omega_m) = P$ **even** $(\omega_{m/2}) + \omega_m \cdot P$ **odd** $(\omega_{m/2})$ $P(\omega_m^2) = P$ **even** $(\omega_{m/2}^2) + \omega_m^2 \cdot P$ **odd** $(\omega_{m/2}^2)$ $\ddot{\cdot}$ $P(\omega_m^{m/2}) = P(1)$ $P(\omega_m^{m/2+1}) = P(\omega_m)$

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$

$$
P(1) = P_{\text{even}}(1) + 1 \cdot P_{\text{odd}}(1)
$$

\n
$$
P(\omega_m) = P_{\text{even}}(\omega_{m/2}) + \omega_m \cdot P_{\text{odd}}(\omega_{m/2})
$$

\n
$$
P(\omega_m^2) = P(\omega_m)
$$

\n
$$
P(\omega_m^{m/2+1}) = P(\omega_m)
$$

\n
$$
P(\omega_m^{m/2+1}) = P(\omega_m)
$$

\n
$$
\vdots
$$

\n
$$
\vdots
$$

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$

 $P(1) = P$ **even** $(1) + 1 \cdot P$ **odd** (1) $P(\omega_m) = P$ **even** $(\omega_{m/2}) + \omega_m \cdot P$ **odd** $(\omega_{m/2})$ $P(\omega_m^2) = P$ **even** $(\omega_{m/2}^2) + \omega_m^2 \cdot P$ **odd** $(\omega_{m/2}^2)$ $P(\omega_m^{m/2}) = P(1)$ $P(\omega_m^{m/2+1}) = P(\omega_m)$ $\ddot{\cdot}$

 $P(\omega_m^{m/2-1}) = P_{\text{even}}(\omega_{m/2}^{m/2-1}) + \omega_m^2 \cdot P_{\text{odd}}(\omega_{m/2}^{m/2-1})$ $P(\omega_m^{m-1}) = P(\omega_m^{m/2-1})$

 $\ddot{\cdot}$

Pseudocode (CLRS pp. 890)

 $FFT(a, n)$ 1 if $n == 1$ // DFT of 1 element is the element itself return a $\overline{2}$ 3 $\omega_n = e^{2\pi i/n}$ $4\quad \omega = 1$ 5 $a^{\text{even}} = (a_0, a_2, \dots, a_{n-2})$ 6 $a^{odd} = (a_1, a_3, \ldots, a_{n-1})$ 7 $y^{\text{even}} = \text{FFT}(a^{\text{even}}, n/2)$ 8 $y^{odd} = FFT(a^{odd}, n/2)$ 9 **for** $k = 0$ to $n/2 - 1$ // at this point, $\omega = \omega_n^k$ 10 $y_k = y_k^{\text{even}} + \omega y_k^{\text{odd}}$ $y_{k+(n/2)} = y_k^{\text{even}} - \omega y_k^{\text{odd}}$ 11 $\omega = \omega \omega_n$ 12 13 **return** y

Step 1: Choose $2n$ values $x_1, x_2, ..., x_{2n}$ and evaluate $A(x_j)$ and $B(x_j)$ for each $j=1,2,...,2n$.

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all *j (these are now just numbers).*

Step 3: Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

How much time do we need for each of the evaluations?

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

How much time do we need for each of the evaluations?

Let $T(n)$ be the time required to evaluate a polynomial of degree $n-1$ on all of the $2n$ $2n$ th roots of unity.

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

How much time do we need for each of the evaluations?

Let $T(n)$ be the time required to evaluate a polynomial of degree $n-1$ on all of the $2n$ $2n$ th roots of unity.

We need to evaluate $P(x) = P_{\text{even}}(x^2) + x \cdot P_{\text{odd}}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \ldots, \omega_{2n}^{2n-1}$

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

How much time do we need for each of the evaluations?

Let $T(n)$ be the time required to evaluate a polynomial of degree $n-1$ on all of the $2n$ $2n$ th roots of unity.

We need to evaluate $P(x) = P_{\text{even}}(x^2) + x \cdot P_{\text{odd}}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \ldots, \omega_{2n}^{2n-1}$

Running time: $T(n) \leq 2T(n/2) + cn$

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j=0,1,...,2n-1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j=0,1,...,2n-1$

How much time do we need for each of the evaluations?

Let $T(n)$ be the time required to evaluate a polynomial of degree $n-1$ on all of the $2n$ $2n$ th roots of unity.

We need to evaluate $P(x) = P_{\text{even}}(x^2) + x \cdot P_{\text{odd}}(x^2)$ at $1, \omega_{2n}, \omega_{2n}^2, \ldots, \omega_{2n}^{2n-1}$

Running time: $T(n) \leq 2T(n/2) + cn$

Asymptotic running time: *O*(*n* log *n*)

What if we divided like this?

Assume that $m = 2^{\ell}$ for some positive integer ℓ .

Let $P_{\text{small}}(x) = p_0 + p_1 x + p_2 x^2 + \ldots + p_{m/2-1} x^{m/2-1}$ $P_{\text{big}}(x) = p_{m/2} + p_{m/2+1}x + p_{m/2+2}x^2 + \ldots + p_{m-1}x^{m/2-1}$

We would have: $P(x) = P_{\text{even}}(x) + x^{m/2} \cdot P_{\text{odd}}(x)$

What is the issue with this?

O(*n* log *n*)

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ $...,$ ω_{2n}^{2n-1} and evaluate $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, ..., 2n - 1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j = 0, 1, ..., 2n - 1$

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *(these are now just numbers).*

Step 3: Recover C from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

What about this?
Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_2)$

Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_2)$

Main idea: We will reduce *polynomial interpolation* to *polynomial evaluation*, which we saw how to do using D&C earlier.

Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_2)$

Main idea: We will reduce *polynomial interpolation* to *polynomial evaluation*, which we saw how to do using D&C earlier.

Define the polynomial
$$
D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s
$$
, and evaluate

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ $C(\omega_{2n}^s) \cdot x^s$

s=0

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot (\omega_{2n}^k)^s
$$

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot (\omega_{2n}^k)^s
$$

=
$$
\sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_t (\omega_{2n}^s)^t \right) (\omega_{2n}^k)^s
$$

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot (\omega_{2n}^k)^s
$$

=
$$
\sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_t (\omega_{2n}^s)^t \right) (\omega_{2n}^k)^s
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^s)^t (\omega_{2n}^k)^s \right)
$$

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot (\omega_{2n}^k)^s
$$

=
$$
\sum_{s=0}^{2n-1} \left(\sum_{t=0}^{2n-1} c_t (\omega_{2n}^s)^t \right) (\omega_{2n}^k)^s
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^s)^t (\omega_{2n}^k)^s \right) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ $C(\omega_{2n}^s) \cdot x^s$

s=0

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate 2*n*−1 ∑ *s*=0 $C(\omega_{2n}^s) \cdot x^s$

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s \right)
$$

Properties of the Roots of Unity

Summation: Suppose $n \geq 1$ and k is not divisible by n . It holds that *n*−1 ∑ *j*=0 $(\omega_n^k)^$ *j* $= 0$

Proof:
$$
\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^n - 1}{\omega_n^k - 1} = \frac{(\omega_n^n)^k - 1}{\omega_n^k - 1} = \frac{1^k - 1}{\omega_n^k - 1} = 0
$$

sum of geometric series

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate ∑ $C(\omega_{2n}^s) \cdot x^s$

2*n*−1

s=0

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s \right)
$$

2*n*−1

∑

 $C(\omega_{2n}^s) \cdot x^s$

s=0

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate

it at the 2nth roots of unity.

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s \right)
$$

For all t such that $t+k$ is not divisible by $2n$, we have: 2*n*−1 ∑ *s*=0 $\left(\omega_{2n}^{t+k}\right)$ *s* $= 0$

2*n*−1

∑

 $C(\omega_{2n}^s) \cdot x^s$

s=0

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate

it at the 2nth roots of unity.

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s \right)
$$

For all t such that $t+k$ is not divisible by $2n$, we have: 2*n*−1 ∑ *s*=0 $\left(\omega_{2n}^{t+k}\right)$ *s* $= 0$

When $t+k$ is divisible by $2n,$ (i.e., when $t = 2n - k$) we have

$$
\omega_{2n}^{t+k}=1
$$

2*n*−1

∑

 $C(\omega_{2n}^s) \cdot x^s$

s=0

Define the polynomial $D(x) = \sum_{n=0}^{\infty} C(\omega_{2n}^{s}) \cdot x^{s}$, and evaluate

it at the 2nth roots of unity.

$$
D(\omega_{2n}^k) = \sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} \omega_{2n}^{st+ks} \right)
$$

=
$$
\sum_{t=0}^{2n-1} c_t \left(\sum_{s=0}^{2n-1} (\omega_{2n}^{t+k})^s \right)
$$

$$
= c_{2n-k} \cdot 2n
$$

For all t such that $t+k$ is not divisible by $2n$, we have: 2*n*−1 ∑ *s*=0 $\left(\omega_{2n}^{t+k}\right)$ *s* $= 0$

When $t+k$ is divisible by $2n,$ (i.e., when $t = 2n - k$) we have

$$
\omega_{2n}^{t+k}=1
$$

Recover *C* from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$

Define the polynomial
$$
D(x) = \sum_{s=0}^{2n-1} C(\omega_{2n}^s) \cdot x^s
$$
, and evaluate

We get:
$$
c_s = \frac{1}{2n} \cdot D\left(\omega_{2n}^{2n-s}\right)
$$

The *Discrete Fourier Transform (DFT)* of a sequence of *m* complex numbers $p_0, p_1, ..., p_{m-1}$ is defined to be the sequence of complex numbers

$$
P(1), P(\omega_m), P(\omega_m^2), \ldots, P(\omega_m^{m-1})
$$

obtained by evaluating the polynomial

$$
P(x) = p_0 + p_1 x + p_2 x^2 + \dots, p_{m-1} x^{m-1}
$$

on each of the *m*th roots of unity.

We can compute \overrightarrow{p} = $M^{-1}\hat{p}$

We can compute \overrightarrow{p} = $M^{-1}\hat{p}$

Is *M* invertible?

We can compute \overrightarrow{p} = $M^{-1}\hat{p}$

Is *M* invertible?

How can we compute *M*[−]1?

M is invertible

Vandermonde matrix

M is invertible

Vandermonde matrix

Another module matrix

\n
$$
\det(M) = \prod_{0 \le i < j \le \ell} (x_j - x_i)
$$

M is invertible

Vandermonde matrix

Another module matrix

\n
$$
\text{det}(M) = \prod_{0 \le i < j \le \ell} (x_j - x_i)
$$

When $m=\ell$ (i.e., M is square) and $z_i \neq z_j$ for all $i \neq j$ (i.e., all z_i 's are distinct and thus $\det(M) \neq 0$, then M is invertible.

Lemma:
$$
M(\omega_m)^{-1} = \frac{1}{n}M(\omega_n^{-1})
$$

$$
\text{Lemma: } M(\omega_m)^{-1} = \frac{1}{n} M(\omega_n^{-1})
$$

Lemma:
$$
M(\omega_m)^{-1} = \frac{1}{n} M(\omega_n^{-1})
$$

Proof:
$$
M(\omega_m)(j, j') = \omega_m^{jj'}
$$
, and $\frac{1}{n}M(\omega_m^{-1})(j, j') = \frac{1}{n}\omega_m^{-jj'}$
Consider the matrix $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)$

$$
\text{Lemma: } M(\omega_m)^{-1} = \frac{1}{n} M(\omega_n^{-1})
$$

Proof:
$$
M(\omega_m)(j, j') = \omega_m^{jj'}
$$
, and $\frac{1}{n}M(\omega_m^{-1})(j, j') = \frac{1}{n}\omega_m^{-jj'}$
Consider the matrix $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)$

$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{-kj} \cdot \omega_m^{kj'} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)}
$$

$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j, j') = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{-kj} \cdot \omega_m^{kj'} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)}
$$

$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{-kj} \cdot \omega_m^{kj'} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)}
$$

If
$$
j = j'
$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j, j') = 1$

$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{-kj} \cdot \omega_m^{kj'} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)}
$$

If
$$
j = j'
$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j, j') = 1$

If
$$
j \neq j'
$$
, then $\frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)} = 0$ by summation.
How to compute *M*

Then we have:

$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j,j') = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{-kj} \cdot \omega_m^{kj'} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)}
$$

If
$$
j = j'
$$
, then $\frac{1}{n}M(\omega_m^{-1}) \cdot M(\omega_m)(j, j') = 1$

If
$$
j \neq j'
$$
, then $\frac{1}{n} \sum_{k=0}^{n-1} \omega_m^{k(j'-j)} = 0$ by summation.

Why? Because $-(m-1) \le j'-j \le m-1$

How to compute *M*

$$
\text{Lemma: } M(\omega_m)^{-1} = \frac{1}{n} M(\omega_n^{-1})
$$

Hence
$$
\frac{1}{n}M(\omega_m^{-1}) \cdot M_m(\omega_m) = I_m
$$
 (the identity matrix).

Running time

O(*n* log *n*)

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ \dots , ω_{2n}^{2n-1} and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, ..., 2n - 1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j = 0, 1, ..., 2n - 1$

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *(these are now just numbers).*

Step 3: Recover C from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

What about this?

Running time

O(*n* log *n*)

Step 1: Choose the $2n$ $2n$ th roots of unity $1,\omega_{2n},$ $\omega_{2n}^2,$ \dots , ω_{2n}^{2n-1} and *evaluate* $A(\omega_{2n}^j)$ and $B(\omega_{2n}^j)$ for each $j = 0, 1, ..., 2n - 1$. 2*n*) and $B(\omega_\gamma^j)$ 2*n*) for each $j = 0, 1, ..., 2n - 1$

Step 2: Compute $C(x_j) = A(x_j) \cdot B(x_j)$ for all j *(these are now just numbers).*

Step 3: Recover C from $C(x_1)$, $C(x_2)$, ..., $C(x_{2n})$.

Convolution Theorem

For any two vectors a and b of length n where n is a power of 2, the convolution $a * b$ of a and b can be computed as:

$$
a * b = \mathsf{DFT}_{2n}^{-1} \left(\mathsf{DFT}_{2n}(a) + \mathsf{DFT}_{2n}(b) \right)
$$