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The product is a polynomial  of degree  where the coefficient of 
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Equivalently: the coefficient vector  of  is the convolution  of the 
coefficient vectors of  and .

n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

C(x) 2n − 2
xk

ck = ∑
(i,j):i+j=k

aibj

c C(x) a * b
A(x) B(x)
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Polynomial interpolation

Consider the polynomial 
A(x) = a0 + a1x + a2x2 + …, adxd

Fact: Any polynomial of degree  
can be represented by its values 
on at least  points.

d

d + 1



Key idea: How to represent 
polynomials

Representation 1: via their coefficient vectors 
 

 , a = (a0, a1, …, an−1) b = (b0, b1, …, bn−1)



Key idea: How to represent 
polynomials

Representation 1: via their coefficient vectors 
 

 , a = (a0, a1, …, an−1) b = (b0, b1, …, bn−1)

Representation 2: via their values on at least  pointsn



New strategy



New strategy

Step 1: Choose  values  and evaluate  
and  for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n



New strategy

Step 1: Choose  values  and evaluate  
and  for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

Step 2: Compute  for all   
(these are now just numbers).

C(xj) = A(xj) ⋅ B(xj) j



New strategy

Step 1: Choose  values  and evaluate  
and  for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

Step 2: Compute  for all   
(these are now just numbers).

C(xj) = A(xj) ⋅ B(xj) j

Step 3: Recover  from .C C(x1), C(x2), …, C(x2n)



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now



A different representation

Consider the polynomial



What is this, geometrically?


What is the a way to represent a 
line uniquely?


Via two values  and .

A(x) = a0 + a1x

x1 x2

x1

x2



A different representation

Consider the polynomial



What is this, geometrically?


What is the a way to represent a 
line uniquely?


Via two values  and .

A(x) = a0 + a1x

x1 x2

x1

x2



A different representation

Consider the polynomial



What is this, geometrically?


What is the a way to represent a 
line uniquely?


Via two values  and .

A(x) = a0 + a1x

x1 x2

x1

x2



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now



Running time

Step 1: Choose  values  and evaluate  
and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

We will choose the  values carefully!2n



Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1



Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument  : the angle of the radius with the positive real axis ϕ



Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument  : the angle of the radius with the positive real axis ϕ

r

Magnitude  : r r = |z | = a2 + b2



Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument  : the angle of the radius with the positive real axis ϕ

r

Magnitude  : r r = |z | = a2 + b2

Polar Coordinates

z = r(cos ϕ + i sin ϕ)
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Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument  : the angle of the radius with the positive real axis ϕ

r

Magnitude  : r r = |z | = a2 + b2

Polar Coordinates

z = r(cos ϕ + i sin ϕ)

eix = cos x + i sin xEuler’s formula:

z = r ⋅ eiϕ
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sum of geometric series
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Running time
Step 1: Choose the  th roots of unity  and evaluate 

 and  for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Let  be the time required to evaluate a polynomial of degree  on all 
of the  th roots of unity.

T(n) n − 1
2n 2n

We need to evaluate  at P(x) = Peven(x2) + x ⋅ Podd(x2)
1,ω2n, ω2

2n, …, ω2n−1
2n

Running time: T(n) ≤ 2T(n /2) + cn

Asymptotic running time: O(n log n)



What if we divided like this?

Assume that  for some positive integer .


Let  
 




We would have: 


What is the issue with this?

m = 2ℓ ℓ

Psmall(x) = p0 + p1x + p2x2 + … + pm/2−1xm/2−1

Pbig(x) = pm/2 + pm/2+1x + pm/2+2x2 + … + pm−1xm/2−1

P(x) = Peven(x) + xm/2 ⋅ Podd(x)



Running time

Step 1: Choose the  th roots of unity  
and evaluate  and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .

2n 2n 1,ω2n, ω2
2n, …, ω2n−1

2n
A(ω j

2n) B(ω j
2n) j = 0,1,…,2n − 1

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

O(n log n)

What about this?
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earlier. 
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Properties of the Roots of Unity

Summation: Suppose  and  is not divisible by . It 

holds that 

n ≥ 1 k n
n−1

∑
j=0

(ωk
n)j = 0

Proof:
n−1

∑
j=0

(ωk
n)j = (ωk

n)n − 1
ωk

n − 1
= (ωn

n)k − 1
ωk

n − 1
=

1k − 1
ωk

n − 1
= 0

sum of geometric series
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(Fast) Polynomial 
Interpolation

Recover  from 


Define the polynomial , and evaluate 

it at the th roots of unity.


We get: 

C C(x1), C(x2), …, C(x2n)

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

cs =
1

2n
⋅ D (ω2n−s

2n )
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Alternative viewpoint
The Discrete Fourier Transform (DFT) of a sequence of  
complex numbers  is defined to be the 
sequence of complex numbers  
 

 
 
obtained by evaluating the polynomial  
 

 
 
on each of the th roots of unity.

m
p0, p1, …, pm−1

P(1), P(ωm), P(ω2
m), …, P(ωm−1

m )

P(x) = p0 + p1x + p2x2 + …, pm−1xm−1

m
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When  (i.e.,  is square) and  
 for all  (i.e., all ’s are distinct 

and thus , then  is invertible. 

m = ℓ M
zi ≠ zj i ≠ j zi

det(M) ≠ 0 M
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How to compute M
Lemma:  M(ωm)−1 =

1
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Proof: , and  

Consider the matrix 

M(ωm)( j, j′ ) = ω jj′ 
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Lemma:  


Hence  (the identify matrix).
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1
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M(ω−1
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1
n
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Running time

Step 1: Choose the  th roots of unity  
and evaluate  and  for each .


Step 2: Compute  for all  
(these are now just numbers).


Step 3: Recover  from .
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Convolution Theorem

For any two vectors  and  of length  where  is a power of 2, 
the convolution  of  and  can be computed as:


a b n n
a * b a b

a * b = DFT−1
2n (DFT2n(a) + DFT2n(b))


